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Summary. The concepts of finite join and finite meet in a lattice
are introduced. Some properties of the finite join are proved. After intro-
ducing the concept of dual lattice in view of dualism we obtain analogous
properties of the meet. We prove these properties of binary operations
in a lattice, which are usually included in axioms of the lattice theory.
We also introduce the concept of Heyting lattice (a bounded lattice with
relative pseudo-complements).

MML Identifier: LATTICE2.

The papers [10], [3], [4], [5], [8], [2], [11], [6], [9], [7], and [1] provide the notation
and terminology for this paper. For simplicity we adopt the following convention:
A denotes a set, C' denotes a non-empty set, B denotes a subset of A, x denotes
an element of A, and f, g denote functions from A into C'. The following
propositions are true:

(1)  f1 B is a function from B into C'.

(2) dom(g | B)=B.

(3) f°B=(f1B)°B.

(4) Ifz e B, then (f | B)(z) = f(x).

(5) f I B =gl Bif and only if for every = such that x € B holds
g9(x) = f(z).

(6) For every set B holds f +- ¢ | B is a function from A into C.
() g1 B+ f=/.

(8)  For all functions f, g such that ¢ < f holds f +- g = f.

@) f+rfIB=/

(10)  If for every = such that € B holds g(z) = f(z), then f+-g | B= f.

!Supported by RPBP.I11-24.C1.

© 1990 Fondation Philippe le Hodey
983 ISSN 0777-4028



984 ANDRZEJ TRYBULEC

In the sequel B will denote a finite subset of A. We now state several propo-
sitions:
(11)  For every set X holds X is a finite subset of A if and only if X C A
and X is finite.
(12) gIB+f=f.
(13) dom(g | B) = B.
(14)  If for every z such that z € B holds g(z) = f(z), then f +-g | B = f.
(15) f°B=(f1B)°B.
(16) If f1B=g| B, then f°B=g°B.
Let D be a non-empty set, and let o, o be binary operations on D. We say
that o absorbs o' if and only if:
(Def.1)  for all elements xz, y of D holds o(x, o'(z, y)) = «.

In the sequel L will be a lattice structure. The following proposition is true

(17)  If the join operation of L is commutative and the join operation of L
is associative and the meet operation of L is commutative and the meet
operation of L is associative and the join operation of L absorbs the meet
operation of L and the meet operation of L absorbs the join operation of
L, then L is a lattice.

Let L be a lattice structure. The functor L° yields a lattice structure and is
defined by:

(Def.2)  L° = ( the carrier of L, the meet operation of L, the join operation of
L).
One can prove the following propositions:

(18)  The carrier of L = the carrier of L° and the join operation of L = the
meet operation of L° and the meet operation of L = the join operation
of L°.

(19) (L°)°=L.

We follow the rules: L will be a lattice and a, b, u, v will be elements of the
carrier of L. We now state a number of propositions:

(20
1
2
3
4

If for every v holds uMv = u, then v = L.

[\)

If for every v holds u v = v, then u = 1.

[\

If for every v holds (the join operation of L)(u, v) = v, then u = L.

[\

If for every v holds u U v = u, then v = T.

[\

If for every v holds u Mv = v, then u = T.

[\~
D

The join operation of L is idempotent.

[\)
3

The join operation of L is commutative.

[\

8
9
0

If the join operation of L has a unity, then L7 = 1¢he join operation of L-

[\

The join operation of L is associative.

AN AN N AN /N N /N /S /N
w [\]
ot

)
)
)
)
)
) If for every v holds (the meet operation of L)(u, v) = v, then u = T.
)
)
)
)
)

The meet operation of L is idempotent.
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The meet operation of L is commutative.
The meet operation of L is associative.

(31)

(32)

(33)  If the meet operation of L has a unity, then T 1 = 1the meet operation of L-
(34)  The join operation of L is distributive w.r.t. the join operation of L.
(35)

If L is a distributive lattice, then the join operation of L is distributive
w.r.t. the meet operation of L.

(36)  If the join operation of L is distributive w.r.t. the meet operation of L,
then L is a distributive lattice.

(37) If L is a distributive lattice, then the meet operation of L is distributive
w.r.t. the join operation of L.

(38)  If the meet operation of L is distributive w.r.t. the join operation of L,
then L is a distributive lattice.

(39) The meet operation of L is distributive w.r.t. the meet operation of L.
(40)  The join operation of L absorbs the meet operation of L.
(41)  The meet operation of L absorbs the join operation of L.

We now define two new functors. Let A be a non-empty set, and let L be a
lattice, and let B be a finite subset of A, and let f be a function from A into
the carrier of L. The functor |_|§3 f yields an element of the carrier of L and is
defined as follows:

(Def.3) LI f = (the join operation of L)- Y5 f.
The functor ﬂ% f yields an element of the carrier of L and is defined by:
(Def.4) [T, f = (the meet operation of L)- 3 p f.

We now state the proposition

(42)  For every non-empty set A and for every lattice L and for every finite
subset B of A and for every function f from A into the carrier of L holds
LI% f = (the join operation of L)- Y5 f.
For simplicity we adopt the following convention: A will be a non-empty
set, x will be an element of A, B will be a finite subset of A, and f, g will be
functions from A into the carrier of L. Next we state several propositions:

43) If z € B, then f(z) C |5 .
44)  If there exists x such that z € B and u C f(z), then u C | % f.
If for every x such that x € B holds f(z) = u and B # (), then I_lfB f=u.
If | |5 f C u, then for every z such that = € B holds f(z) C u.
If B # () and for every z such that x € B holds f(x) C u, then I_lfB fCu.
If B # () and for every z such that 2 € B holds f(z) C g(z), then
L f E Uk
(49) I B#Qand f I B=g|B,then |[;5f=|]zg
(50) If B # 0, then v U | |5 f = LI%( (the join operation of L)°(v, f)).
Let L be a lattice. Then L° is a lattice.
We now state a number of propositions:

o
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(51)  For every lattice L and for every finite subset B of A and for every
function f from A into the carrier of L and for every function f’ from A
into the carrier of L° such that f = f’ holds |5 f = [T5f" and [|5f =
s /"

(52)  For all elements a’, b" of the carrier of L° such that a = @’ and b =¥/
holds aMb=d" UV and aUb=da' NV

(53) If a C b, then for all elements a’, V' of the carrier of L° such that a = @’
and b =10 holds & C a’.

(54)  For all elements a’, b’ of the carrier of L° such that o’ C ¥ and a = d’

and b =t holds b C a.

If z € B, then [5f C f(=).

If there exists x such that z € B and f(x) C u, then [ 5 f C w.

If for every x such that € B holds f(x) = wand B # (), then [ |5 f = u.
If B # 0, then v [ 5 f = [T5( (the meet operation of L)°(v, f)).

If u C [ 5 f, then for every x such that € B holds u C f(x).
IfB#0and f| B=g| B, then [ 5f = [T5g.

If B # () and for every z such that x € B holdsu C f(z), thenu C [ ]5 f.
If B # () and for every z such that z € B holds f(z) C g(z), then

[Taf E Mo

(63)  For every lattice L holds L is a lower bound lattice if and only if L° is
an upper bound lattice.

AN SN N N N N N
S O O Ot Ot Ot Ot Ot
N R O © 00 J O Ot
N’ N e e N N N N

(64)  For every lattice L holds L is an upper bound lattice if and only if L°
is a lower bound lattice.

(65) L is a distributive lattice if and only if L° is a distributive lattice.

In the sequel L denotes a lower bound lattice, f, g denote functions from A
into the carrier of L, and u denotes an element of the carrier of L. The following
propositions are true:

17 is a unity w.r.t. the join operation of L.
The join operation of L has a unity.

If f1 B=g B, then I f =g
If for every x such that = € B holds f(x) C u, then |_]§3 fCu.
71)  If for every z such that x € B holds f(z) C g(x), then [_|fg fC [_|§3 qg.

In the sequel L will denote an upper bound lattice, f, g will denote functions
from A into the carrier of L, and u will denote an element of the carrier of L.
The following propositions are true:

)
)
68) L = Lthe join operation of L-
)
)

(72) Ty is a unity w.r.t. the meet operation of L.
73

(73)
(74) T L = 1the meet operation of L-
(75) If f1B=g 1B, then [Tzf = [Tzg.

The meet operation of L has a unity.
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(76)  If for every x such that = € B holds u C f(z), then u C [ ]5 f.
(77)  If for every z such that = € B holds f(z) C g(z), then [ 5f C [ 159
(78)  For every lower bound lattice L holds L = T o.
(79)  For every upper bound lattice L holds T = L ..
A lower bound lattice is called a distributive lower bounded lattice if:
(Def.5) it is a distributive lattice.
In the sequel L will denote a distributive lower bounded lattice, f, g will

denote functions from A into the carrier of L, and u will denote an element of
the carrier of L. We now state four propositions:

(80)  The meet operation of L is distributive w.r.t. the join operation of L.

(81) (the meet operation of L)(u, | '3 f) = [U%( (the meet operation of
L)*(u, f))-

(82)  If for every x such that = € B holds g(z) = M f(x), then M |5 f =
Lk 9-

(83)  wn S f=5( (the meet operation of L)°(u, f)).

A lower bound lattice is said to be a Heyting lattice if:
(Def.6) it is a implicative lattice.

Next we state the proposition

(84)  For every lower bound lattice L holds L is a Heyting lattice if and only
if for every elements x, z of the carrier of L there exists an element y of
the carrier of L such that z My C z and for every element v of the carrier
of L such that zMwv C 2z holds v C y.

Let L be a lattice. We say that L is finite if and only if:
(Def.7)  the carrier of L is finite.

We now state several propositions:
(85)  For every lattice L holds L is finite if and only if L° is finite.
(86)  For every lattice L such that L is finite holds L is a lower bound lattice.

(87)  For every lattice L such that L is finite holds L is an upper bound
lattice.

(88)  For every lattice L such that L is finite holds L is a bound lattice.

(89)  For every distributive lattice L such that L is finite holds L is a Heyting
lattice.
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