Boolean Domains

Andrzej Trybulec1 \quad Agata Darmochwa/suppress l2
Warsaw University \quad Warsaw University
Bia/suppress lystok \quad Bia/suppress lystok

Summary. BOOLE DOMAIN is a SET DOMAIN that is closed under union and difference. This condition is equivalent to being closed under symmetric difference and one of the following operations: union, intersection or difference. We introduce the set of all finite subsets of a set A, denoted by $\text{Fin} \ A$. The mode Finite Subset of a set A is introduced with the mother type: Element of $\text{Fin} \ A$. In consequence, “Finite Subset of . . .” is an elementary type, therefore one may use such types as “set of Finite Subset of A”, “[Finite Subset of A], Finite Subset of A]”, and so on. The article begins with some auxiliary theorems that belong really to [5] or [1] but are missing there. Moreover, bool A is redefined as a SET DOMAIN, for an arbitrary set A.

The articles [4], [5], [3], and [2] provide the notation and terminology for this paper. In the sequel X, Y will denote objects of the type set. The following propositions are true:

\begin{align*}
(1) \quad X \text{ misses } Y & \text{ implies } X \setminus Y = X \land Y \setminus X = Y, \\
(2) \quad X \text{ misses } Y & \text{ implies } (X \cup Y) \setminus Y = X \land (X \cup Y) \setminus X = Y, \\
(3) \quad X \cup Y & = X \uplus (Y \setminus X), \\
(4) \quad X \cup Y & = X \uplus Y \uplus X \cap Y, \\
(5) \quad X \setminus Y & = X \uplus (X \cap Y), \\
(6) \quad X \cap Y & = X \uplus Y \uplus (X \cup Y), \\
(7) \quad (\text{for } x \text{ being set st } x \in X \text{ holds } x \in Y) & \text{ implies } X \subseteq Y.
\end{align*}

1Supported by RPBP.III-24.C1.
2Supported by RPBP.III-24.C1.
Let us consider X. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$\text{bool } X \quad \text{is} \quad \text{SET_DOMAIN}.$$

The following proposition is true

$$(8)\quad \text{for } Y \text{ being Element of } \text{bool } X \text{ holds } Y \subseteq X.$$

The mode

$$\text{BOOLE_DOMAIN},$$

which widens to the type \text{SET_DOMAIN}, is defined by

$$\text{for } X,Y \text{ being Element of it holds } X \cup Y \in \text{it} \land X \setminus Y \in \text{it}.$$

The following proposition is true

$$(9)\quad \text{for } A \text{ being SET_DOMAIN holds } A \text{ is BOOLE_DOMAIN}$$

iff for X,Y being Element of A holds $X \cup Y \in A \land X \setminus Y \in A$.

In the sequel A will denote an object of the type \text{BOOLE_DOMAIN}. One can prove the following propositions:

$$(10)\quad X \in A \land Y \in A \text{ implies } X \cup Y \in A \land X \setminus Y \in A,$$

$$(11)\quad X \text{ is Element of } A \land Y \text{ is Element of } A \text{ implies } X \cup Y \text{ is Element of } A,$$

$$(12)\quad X \text{ is Element of } A \land Y \text{ is Element of } A \text{ implies } X \setminus Y \text{ is Element of } A.$$

The arguments of the notions defined below are the following: A which is an object of the type reserved above; X, Y which are objects of the type Element of A. Let us note that it makes sense to consider the following functors on restricted areas. Then

$$X \cup Y \quad \text{is} \quad \text{Element of } A,$$

$$X \setminus Y \quad \text{is} \quad \text{Element of } A.$$

The following propositions are true:

$$(13)\quad X \text{ is Element of } A \land Y \text{ is Element of } A \text{ implies } X \cap Y \text{ is Element of } A,$$

$$(14)\quad X \text{ is Element of } A \land Y \text{ is Element of } A \text{ implies } X \div Y \text{ is Element of } A,$$

$$(15)\quad \text{for } A \text{ being SET_DOMAIN st}$$

for X,Y being Element of A holds $X \div Y \in A \land X \setminus Y \in A$

holds A is BOOLE_DOMAIN,
for A being SET_DOMAIN st
for X,Y being Element of A holds $X \setminus Y \in A \& X \cap Y \in A$
holds A is BOOLE_DOMAIN,

for A being SET_DOMAIN st
for X,Y being Element of A holds $X \setminus Y \in A \& X \cup Y \in A$
holds A is BOOLE_DOMAIN.

The arguments of the notions defined below are the following: A which is an object of the type reserved above; X, Y which are objects of the type Element of A. Let us note that it makes sense to consider the following functors on restricted areas. Then

$X \cap Y$ is Element of A,

$X \setminus Y$ is Element of A.

We now state four propositions:

(18) $\emptyset \in A$,

(19) \emptyset is Element of A,

(20) bool A is BOOLE_DOMAIN,

(21) for A,B being BOOLE_DOMAIN holds $A \cap B$ is BOOLE_DOMAIN.

In the sequel A, B will denote objects of the type set. Let us consider A. The functor

$$\text{Fin} A,$$

with values of the type BOOLE_DOMAIN, is defined by

for X being set holds $X \in \text{it}$ iff $X \subseteq A \& X$ is finite.

The following propositions are true:

(22) $B \in \text{Fin} A$ iff $B \subseteq A \& B$ is finite,

(23) $A \subseteq B$ implies $\text{Fin} A \subseteq \text{Fin} B$,

(24) $\text{Fin} (A \cap B) = \text{Fin} A \cap \text{Fin} B$,

(25) $\text{Fin} A \cup \text{Fin} B \subseteq \text{Fin} (A \cup B)$,

(26) $\text{Fin} A \subseteq \text{bool} A$,

(27) A is finite implies $\text{Fin} A = \text{bool} A$,

(28) $\text{Fin} \emptyset = \{ \emptyset \}$.