
Mizar Hands-on Tutorial

Adam Naumowicz Artur Korni lowicz Adam Grabowski

Institute of Informatics,
University of Bialystok, Poland

CICM 2016, Bia lystok, July 29, 2016

Overview of the tutorial

Part 1 (Adam Naumowicz): Introduction

Part 2 (Artur Korni lowicz): Formalizing an example theory

Part 3 (Adam Grabowski): Actual hands-on session

Adam Naumowicz, Artur Korni lowicz, Adam Grabowski Institute of Informatics, University of Bialystok, Poland

Mizar Hands-on Tutorial 2 / 51

What is Mizar ?

Mizar is a system for formalizing and proof-checking mathematics
invented by Andrzej Trybulec (†2013) and developed since 1970s.

Its language tries to mimic standard mathematical practice.

Its verification engine is designed to preserve human understanding
of proof steps.

It is being used to build a centralized library of formalized
mathematical knowledge based on simple axioms (of set theory) -
Mizar Mathematical Library (MML).

Adam Naumowicz, Artur Korni lowicz, Adam Grabowski Institute of Informatics, University of Bialystok, Poland

Mizar Hands-on Tutorial 3 / 51

What do we mean by “formalizing mathematics” here?

Precise meaning of every single notion used in mathematical text

Full disambiguation of used notions
Clear dependence of definitions, axioms and theorems
Rigorous use of deduction rules

The formalization should be understandable for a computer system
to automatically perform the following tasks:

Checking lexical and grammatical correctness
Linking new developments with the data already available
Verifying logical validity of all inference steps

Ideally, the computer input language should facilitate various
purposes of developing mathematical proofs

Convincing
Documenting
Presentation

Adam Naumowicz, Artur Korni lowicz, Adam Grabowski Institute of Informatics, University of Bialystok, Poland

Mizar Hands-on Tutorial 4 / 51

Key features of the Mizar system

The system uses classical first-order logic

Statements with free second-order variables (e.g. the induction scheme)
are supported

The system uses natural deduction for doing conditional proofs

S. Jaśkowski, On the rules of supposition in formal logic. Studia
Logica, 1, 1934.
F. B. Fitch, Symbolic Logic. An Introduction. The Ronald Press
Company, 1952.
K. Ono, On a practical way of describing formal deductions. Nagoya
Mathematical Journal, 21, 1962.

The system uses a declarative style of writing proofs (mostly forward
reasoning) - resembling mathematical practice

Adam Naumowicz, Artur Korni lowicz, Adam Grabowski Institute of Informatics, University of Bialystok, Poland

Mizar Hands-on Tutorial 5 / 51

Mizar Mathematical Library - MML

“A good system without a library is useless. A good library for a bad
system is still very interesting... So the library is what counts.”
(F. Wiedijk, Estimating the Cost of a Standard Library for a
Mathematical Proof Checker.)

A systematic collection of articles started around 1989

Recent MML version - 5.37.1275

includes 1275 articles written by over 250 authors
over 56000 theorems
over 11000 definitions
over 800 schemes
over 13000 registrations

The library is based on the axioms of Tarski-Grothendieck set theory

Adam Naumowicz, Artur Korni lowicz, Adam Grabowski Institute of Informatics, University of Bialystok, Poland

Mizar Hands-on Tutorial 6 / 51

The Mizar language

The proof language is designed to be as close as possible to
“mathematical vernacular” and be automatically verifiable

It is a reconstruction of the language of mathematics
It forms “a subset” of standard English used in mathematical texts
The language is highly structured - to ensure producing rigorous and
semantically unambiguous texts
It allows prefix, postfix, infix notations for predicates as well as
parenthetical notations for functors

Adam Naumowicz, Artur Korni lowicz, Adam Grabowski Institute of Informatics, University of Bialystok, Poland

Mizar Hands-on Tutorial 7 / 51

The Mizar language - ctd. (1)

The language includes the standard set of first order logical
connectives and quantifiers for forming formulas

¬α not α
α ∧ β α & β
α ∨ β α or β
α→ β α implies β
α↔ β α iff β
∃xα ex x st α
∀xα for x holds α
∀x :αβ for x st α holds β

Adam Naumowicz, Artur Korni lowicz, Adam Grabowski Institute of Informatics, University of Bialystok, Poland

Mizar Hands-on Tutorial 8 / 51

The Mizar language - ctd. (2)

Each quantified variable has to be given its type, so the quantifiers
actually take the form

for x being set holds ...

or
ex y being real number st ...

where set and real number represent examples of types

Mizar allows to globally assign this type to selected variable names
with a reservation

reserve x,y for real number;

Then one does not have to mention the type of x or y in quantified
formulas.

With some reservations declared, Mizar implicitly applies universal
quantifiers to formulas if needed

Adam Naumowicz, Artur Korni lowicz, Adam Grabowski Institute of Informatics, University of Bialystok, Poland

Mizar Hands-on Tutorial 9 / 51

The Mizar language - ctd. (3)

The formulas
for x holds for y holds ...

or
for x holds ex y st ...

may be shortened to
for x for y holds ...

and
for x ex y st ...

Instead of writing
for x holds for y holds ...

or
ex x st ex y st ...

more convenient forms with lists of variables are allowed
for x,y holds ...

and
ex x,y st ...

The binding force of quantifiers is weaker than that of connectives
Adam Naumowicz, Artur Korni lowicz, Adam Grabowski Institute of Informatics, University of Bialystok, Poland

Mizar Hands-on Tutorial 10 / 51

The Mizar language - ctd. (4)

Mizar reserved words (please mind that the language is
case-sensitive):

according aggregate and antonym as associativity assume asymmetry
attr axiom be begin being by canceled case
cases cluster coherence commutativity compatibility connectedness consider consistency
constructors contradiction correctness def deffunc define definition definitions
defpred end environ equals ex exactly existence for
from func given hence hereby holds idempotence identify
if iff implies involutiveness irreflexivity is it let
means mode non not notation notations now of
or otherwise over per pred prefix projectivity proof
@proof provided qua reconsider redefine reflexivity registration registrations
requirements reserve sch scheme schemes section selector set
st struct such suppose symmetry synonym take that
the then theorem theorems thesis thus to transitivity
uniqueness vocabularies when where with wrt

Adam Naumowicz, Artur Korni lowicz, Adam Grabowski Institute of Informatics, University of Bialystok, Poland

Mizar Hands-on Tutorial 11 / 51

The Mizar language - ctd. (5)

Mizar special symbols:
, ; : () [] { } = & ->

.= ... $1 $2 $3 $4 $5 $6 $7 $8 $9 $10 (# #)

A double colon (::) in Mizar texts starts a one-line comment

If the double colon is followed by the dollar sign ($), this makes a
special pragma (e.g. ::$V-)

Adam Naumowicz, Artur Korni lowicz, Adam Grabowski Institute of Informatics, University of Bialystok, Poland

Mizar Hands-on Tutorial 12 / 51

Is Mizar typed or untyped?

In a foundational sense, Mizar is based on untyped set theory.
No particular axiom system is imposed by the system (MML is based
on Tarski-Grothendieck set theory).
Its objects are “just one type” (no pre-imposed disjointness,
inclusion, or similar conditions on these objects via a foundational
mechanism decoupled from the underlying classical logic).

The objects can still have various properties (a number, ordinal
number, complex number, Conway number, a relation, function,
complex function, complex matrix) which require different
treatment, so they must be typed.
It is not enough to classify them into “sorts” or otherwise disjoint
“kinds”, because we want them to represent various (dependent)
predicates.
Types are used in quantified and qualifying formulas, for parsing,
semantic analysis, overloading resolution, and inferring object
properties.

Adam Naumowicz, Artur Korni lowicz, Adam Grabowski Institute of Informatics, University of Bialystok, Poland

Mizar Hands-on Tutorial 13 / 51

Mizar type system’s main features

The type system can be characterized by:

soft-typing with possibly “dynamic” type change,

typing information in a syntactically “elegant” way (resembling
mathematical practice, e.g. via using dependent types and
attributes)

types can have an empty list of arguments (most commonly they
have explicit and/or implicit arguments),
adjectives can also be expressed with their own visible arguments,
e.g., n-dimensional, or X-valued

types are non-empty by definition (to guarantee that the formalized
theory always has some denotation).

Adam Naumowicz, Artur Korni lowicz, Adam Grabowski Institute of Informatics, University of Bialystok, Poland

Mizar Hands-on Tutorial 14 / 51

Reconstructing the type system

There have been attempts to reconstruct elements of this type system in
order to translate the mathematical data encoded in MML into

common mathematical data exchange formats, e.g. OMDoc,

other proof assistants, e.g. HOL Light or Isabelle.

A particular advantage of the soft-typing approach is its straightforward
translation to first-order ATP formats (allows developing hammer-style
ITP methods).

Adam Naumowicz, Artur Korni lowicz, Adam Grabowski Institute of Informatics, University of Bialystok, Poland

Mizar Hands-on Tutorial 15 / 51

Mizar glossary

Formulae are constructed with predicates and the constructors of
terms are called functors.

When any variable is introduced in Mizar, its type must be given
(the most general type being object).

For any term, the verifier computes its unique type.

Types in Mizar are constructed using modes and the constructors
of adjectives are called attributes (every attribute introduces two
adjectives, e.g. empty and non empty).

Structures (record types) and their fields are created with
structural modes and selectors, respectively.

Adam Naumowicz, Artur Korni lowicz, Adam Grabowski Institute of Informatics, University of Bialystok, Poland

Mizar Hands-on Tutorial 16 / 51

Mizar type constructors

Mizar supports two kinds of mode definitions:

1 modes defined as a collection (called a cluster) of adjectives
associated with an already defined radix type to which they may be
applied, called expandable modes,

definition

let G,H be AddGroup;

mode Homomorphism of G,H is additive Function of G,H;

end;

2 modes that define a type with an explicit definiens that must be
fulfilled for an object to have that type.
definition

let G be AbGroup, K,L be Ring;

let J be Function of K,L;

let V be for LeftMod of K, W be LeftMod of L;

mode Homomorphism of J,V,W -> Function of V,W means

(for x,y being Vector of V holds it.(x+y) = it.x+it.y) &

for a being Scalar of K, x being Vector of V holds it.(a*x) = J.a*it.x;

end;

Adam Naumowicz, Artur Korni lowicz, Adam Grabowski Institute of Informatics, University of Bialystok, Poland

Mizar Hands-on Tutorial 17 / 51

Examples of attributes

Without implicit parameters:
definition

let R be Relation;

attr R is well_founded means

for Y being set st Y c= field R & Y <> {}

ex a being set st a in Y & R-Seg a misses Y;

end;

With an implicit parameter:
definition

let n be Nat, X be set;

attr X is n-at_most_dimensional means

for x being set st x in X holds card x c= n+1;

end;

Adam Naumowicz, Artur Korni lowicz, Adam Grabowski Institute of Informatics, University of Bialystok, Poland

Mizar Hands-on Tutorial 18 / 51

The lattice of Mizar types

Types of mathematical objects defined in the Mizar library form a
sup-semilattice with widening (subtyping) relation as the order. There are
two hierarchies of types:

1 the main one based on the type set, and

2 the other based on the notion of structure.

The most general type in Mizar (to which both sets and structures
widen) is called object.

Adam Naumowicz, Artur Korni lowicz, Adam Grabowski Institute of Informatics, University of Bialystok, Poland

Mizar Hands-on Tutorial 19 / 51

Mizar structural types

Structures model mathematical notions like groups, topological
spaces, categories, etc. which are usually represented as tuples.
A structure definition contains, therefore, a list of selectors to
denote its fields, characterized by their name and type.
Mizar supports multiple inheritance of structures that makes a
whole hierarchy of interrelated structures available in the library,
with the 1-sorted structure being the common ancestor of almost
all other structures.
One can define structures parameterized by arbitrary sets, or other
structures.

definition

let F be 1-sorted;

struct(addLoopStr) ModuleStr over F

(# carrier -> set,

addF -> BinOp of the carrier,

ZeroF -> Element of the carrier,

lmult -> Function of [:the carrier of F, the carrier:], the carrier #);

end;

Adam Naumowicz, Artur Korni lowicz, Adam Grabowski Institute of Informatics, University of Bialystok, Poland

Mizar Hands-on Tutorial 20 / 51

Type change mechanisms

The effective (semantic) type of a given Mizar term is determined by a
number of factors - most importantly, by the available (imported from
the library or introduced earlier in the same formalization) redefinitions
and adjective registrations.
Redefinitions are used to change the definiens or type for some
constructor if such a change is provable with possibly more specific
arguments. Depending on the kind of the redefined constructor and the
redefined part, each redefinition induces a corresponding correctness
condition that guarantees that the new definition is compatible with the
old one.
Registrations refer to several kinds of Mizar features connected with
automatic processing of the type information based on adjectives.
Grouping adjectives in so called clusters (hence the keyword cluster

used in their syntax) enables automation of some type inference rules.
Existential registrations are used to secure the nonemptiness of Mizar
types. The dependencies of adjectives recorded as conditional
registrations are used automatically by the Mizar verifier.

Adam Naumowicz, Artur Korni lowicz, Adam Grabowski Institute of Informatics, University of Bialystok, Poland

Mizar Hands-on Tutorial 21 / 51

Example of a mode redefinition

Original definition:
definition

let X;

mode Element of X -> set means

it in X if X is non empty otherwise it is empty;

end;

A redefinition:
definition

let A, B be non empty set;

let r be non empty Relation of A, B;

redefine mode Element of r -> Element of [:A,B:];

end;

Adam Naumowicz, Artur Korni lowicz, Adam Grabowski Institute of Informatics, University of Bialystok, Poland

Mizar Hands-on Tutorial 22 / 51

Example of an attribute redefinition

Original definition:
definition

let R be Relation;

attr R is co-well_founded means

R~ is well_founded;

end;

A redefinition:
definition

let R be Relation;

redefine attr R is co-well_founded means

for Y being set st Y c= field R & Y <> {}

ex a being object st a in Y & for b being object st b in Y & a <> b

holds not [a,b] in R;

end;

Adam Naumowicz, Artur Korni lowicz, Adam Grabowski Institute of Informatics, University of Bialystok, Poland

Mizar Hands-on Tutorial 23 / 51

Examples of registrations

Existential:
registration

let n be Nat;

cluster n-at_most_dimensional subset-closed non empty for set;

end;

Conditional:
registration

let n be Nat;

cluster n-at_most_dimensional -> finite-membered for set;

end;

Functorial (term):
registration

let n be Nat;

let X, Y be n-at_most_dimensional set;

cluster X \/ Y -> n-at_most_dimensional;

end;

Adam Naumowicz, Artur Korni lowicz, Adam Grabowski Institute of Informatics, University of Bialystok, Poland

Mizar Hands-on Tutorial 24 / 51

Explicit type change

For syntactic (identification) purposes, e.g. to force the system use
one of a number of matching redefinitions, the type of a term can
be explicitely qualified to one which is less specific, e.g.
1 qua real number

whereas in standard environments the constant has the type
natural number and then appropriate (more specific) definitions
apply to it.

The reconsider statement forces the system to treat any given
term as if its type was the one stated (with extra justification
provided), e.g.
reconsider R as Field

whereas the actual type of the variable R might be Ring. It is
usually used if a particular type is required by some construct (e.g.
definitional expansion) and the fact that a term has this type
requires extra reasoning after the term is introduced in a proof.

Adam Naumowicz, Artur Korni lowicz, Adam Grabowski Institute of Informatics, University of Bialystok, Poland

Mizar Hands-on Tutorial 25 / 51

Types in Mizar inference checking

During the proof-checking phase, Mizar uses a non-trivial
dependent congruence-closure algorithm (Equalizer) that merges
terms that are known to be semantically equal, merging also their
(dependent) soft-types – occasionally deriving a contradiction from
adjectives like “empty” and “non-empty” – and propagating such
mergers up the term and type hierarchy.

The refutational Mizar proof checker takes advantage of this, by
doing all its work on the resulting semantic aggregated
equivalence classes of terms, each having many properties –
“superclusters” derived by the type system and the congruence
closure algorithm, i.e., by calculating a transitive closure of all
available registrations over the merged terms.

Adam Naumowicz, Artur Korni lowicz, Adam Grabowski Institute of Informatics, University of Bialystok, Poland

Mizar Hands-on Tutorial 26 / 51

Miscellaneous type system features

The global choice construction, e.g. the natural number, allows
to introduce the unique constants for each well-defined type.

Selected types can have a special sethood property registered. This
property means that all objects of the type for which the property is
declared are elements of some set and in consequence it is valid to
use them within a Fraenkel term (set comprehension) operator.

The construction the set of all is an abbreviation for Fraenkel
terms defining sets of terms where the terms do not have to satisfy
any additional constraints, e.g. the set of all n where n is

natural number.

Selected types have extra processing in the Mizar verifier (switched
on by the so called requirements directives) in order to automate
some typical tasks and exploit their properties to make routine
inferences obvious, e.g. the computational processing of objects
whose type widens to the type complex number.

Adam Naumowicz, Artur Korni lowicz, Adam Grabowski Institute of Informatics, University of Bialystok, Poland

Mizar Hands-on Tutorial 27 / 51

More language constructs (definitions)

Synonyms/antonyms

“properties”

E.g. commutativity, reflexivity, transitivity etc.

“requirements”

E.g. the built-in arithmetic on complex numbers

Identifying (formally different, but equal) constructors

Reductions (to simpler forms built from their subarguments)

Adam Naumowicz, Artur Korni lowicz, Adam Grabowski Institute of Informatics, University of Bialystok, Poland

Mizar Hands-on Tutorial 28 / 51

More language constructs (proofs)

Fraenkel terms (set comprehension binders)

Iterative equalities

“Syntactic sugar” features

Adam Naumowicz, Artur Korni lowicz, Adam Grabowski Institute of Informatics, University of Bialystok, Poland

Mizar Hands-on Tutorial 29 / 51

Approximating informal mathematics in Mizar

Formal proof sketches
A formal proof sketch is a formalization which is

Shorter than the full formalization (details of justification are not
presented)
It can be extended to full formalization (then it is correct)
There are matching locations in both versions (one could fold and
unfold pieces of text between both versions)

In a general setting

Encoding in the correct syntax
Leaving out references in inference steps

In the case of Mizar

Encoding with no Parser, Analyzer and Reasoner errors
Ignoring Verifier errors (*4 and *1)

Adam Naumowicz, Artur Korni lowicz, Adam Grabowski Institute of Informatics, University of Bialystok, Poland

Mizar Hands-on Tutorial 30 / 51

Encoding proofs in Mizar

For any formula Φ its proof may take the form of a proof block in
which the same formula is finally stated as a conclusion after the
thus keyword.

Φ
proof

...

thus Φ;

end;

Adam Naumowicz, Artur Korni lowicz, Adam Grabowski Institute of Informatics, University of Bialystok, Poland

Mizar Hands-on Tutorial 31 / 51

Encoding proofs in Mizar - ctd. (2)

If the formula to be proved is a conjunction, then the proof should
contain two conclusions:

Φ1 & Φ2

proof

...

thus Φ1;

...

thus Φ2;

end;

Adam Naumowicz, Artur Korni lowicz, Adam Grabowski Institute of Informatics, University of Bialystok, Poland

Mizar Hands-on Tutorial 32 / 51

Encoding proofs in Mizar - ctd. (3)

When proving an implication, the most natural proof is the one
where we first assume the antecedent and conclude with the
consequent:

Φ1 implies Φ2

proof

assume Φ1;

...

thus Φ2;

end;

Adam Naumowicz, Artur Korni lowicz, Adam Grabowski Institute of Informatics, University of Bialystok, Poland

Mizar Hands-on Tutorial 33 / 51

Encoding proofs in Mizar - ctd. (4)

Equivalence is interpreted as a conjunction of two implications,
which yields the following proof skeleton:

Φ1 iff Φ2

proof

...

thus Φ1 implies Φ2;

...

thus Φ2 implies Φ1;

end;

Adam Naumowicz, Artur Korni lowicz, Adam Grabowski Institute of Informatics, University of Bialystok, Poland

Mizar Hands-on Tutorial 34 / 51

Encoding proofs in Mizar - ctd. (5)

The level of proof nesting can be reduced using the following
skeleton:

Φ1 iff Φ2

proof

hereby

assume Φ1;

...

thus Φ2;

end;

assume Φ2;

...

thus Φ1;

end;

Adam Naumowicz, Artur Korni lowicz, Adam Grabowski Institute of Informatics, University of Bialystok, Poland

Mizar Hands-on Tutorial 35 / 51

Encoding proofs in Mizar - ctd. (6)

Disjunction is usually proved by assuming that the first disjunct does
not hold and then to proving the other:

Φ1 or Φ2

proof

assume not Φ1;

...

thus Φ2;

end;

Adam Naumowicz, Artur Korni lowicz, Adam Grabowski Institute of Informatics, University of Bialystok, Poland

Mizar Hands-on Tutorial 36 / 51

Encoding proofs in Mizar - ctd. (7)

Any formula can also be proved using the reductio ad absurdum
method:

Φ
proof

assume not Φ;

...

thus contradiction;

end;

Adam Naumowicz, Artur Korni lowicz, Adam Grabowski Institute of Informatics, University of Bialystok, Poland

Mizar Hands-on Tutorial 37 / 51

Encoding proofs in Mizar - ctd. (8)

A proof of a universally quantified formula starts with selecting an
arbitrary but fixed variable of a certain type and then concluding the
validity of that formula substituted with it:

for a being Θ holds Φ
proof

let a be Θ;

...

thus Φ;

end;

Adam Naumowicz, Artur Korni lowicz, Adam Grabowski Institute of Informatics, University of Bialystok, Poland

Mizar Hands-on Tutorial 38 / 51

Encoding proofs in Mizar - ctd. (9)

A proof of an existential statement must provide a witness term a
and an appropriate conclusion.

ex a being Θ st Φ
proof

...

take a;
...

thus Φ;

end;

Adam Naumowicz, Artur Korni lowicz, Adam Grabowski Institute of Informatics, University of Bialystok, Poland

Mizar Hands-on Tutorial 39 / 51

Getting the proof structure correct

The Reasoner module is responsible for checking if a proof tactic
used by the author corresponds to the formula being proved

The checking is based on the internal representation of formulas in a
simplified “canonical” form - their semantic correlates using only
VERUM, not, & and for ... holds ... together with atomic
formulas

Other formulas are encoded using the following set of rules:

VERUM is the neutral element of the conjunction
double negation rule is used
de Morgan’s laws are used for disjunction and existential quantifiers
α implies β is changed into not(α & not β)
α iff β is changed into α implies β & β implies α, i.e. not(α &

not β) & not(β & not α)
conjunction is associative but not commutative

Adam Naumowicz, Artur Korni lowicz, Adam Grabowski Institute of Informatics, University of Bialystok, Poland

Mizar Hands-on Tutorial 40 / 51

Justifications in Mizar

Mizar checks all first order statements in an article for logical
correctness using its Checker module equipped with a certain
concept of obviousness of inferences (classical disprover). In that
module an inference of the form

α1, . . . , αk

β

is transformed to
α1, . . . , αk ,¬β

⊥

Adam Naumowicz, Artur Korni lowicz, Adam Grabowski Institute of Informatics, University of Bialystok, Poland

Mizar Hands-on Tutorial 41 / 51

Justifications in Mizar - ctd. (1)

A disjunctive normal form (DNF) of the premises is then created and
the system tries to refute it

([¬]α1,1 ∧ · · · ∧ [¬]α1,k1) ∨ · · · ∨ ([¬]αn,1 ∧ · · · ∧ [¬]αn,kn)

⊥

where αi,j are atomic or universal sentences (negated or not)

Adam Naumowicz, Artur Korni lowicz, Adam Grabowski Institute of Informatics, University of Bialystok, Poland

Mizar Hands-on Tutorial 42 / 51

Justifications in Mizar - ctd. (2)

For the inference to be accepted, all disjuncts must be refuted. So in
fact n inferences are checked

[¬]α1,1 ∧ · · · ∧ [¬]α1,k1

⊥
...

[¬]αn,1 ∧ · · · ∧ [¬]αn,kn

⊥

Adam Naumowicz, Artur Korni lowicz, Adam Grabowski Institute of Informatics, University of Bialystok, Poland

Mizar Hands-on Tutorial 43 / 51

A typical induction scheme in Mizar

scheme :: NAT_1:sch 2

NatInd { P[Nat] } : for k being Nat holds P[k]

provided

P[0] and

for k being Nat st P[k] holds P[k + 1];

Adam Naumowicz, Artur Korni lowicz, Adam Grabowski Institute of Informatics, University of Bialystok, Poland

Mizar Hands-on Tutorial 44 / 51

Exemplary scheme proof (special student environment)

reserve i,j,k,l,m,n for natural number;

i+k = j+k implies i=j;
proof

defpred P[natural number] means
i+$1 = j+$1 implies i=j;

A1: P[0]
proof
assume B0: i+0 = j+0;
B1: i+0 = i by INDUCT:3;
B2: j+0 = j by INDUCT:3;
hence thesis by B0,B1,B2;

end;
A2: for k st P[k] holds P[succ k]
proof

let l such that C1: P[l];
assume C2: i+succ l=j+succ l;
then C3: succ(i+l) = j+succ l by C2,INDUCT:4
.= succ(j+l) by INDUCT:4;
hence thesis by C1,INDUCT:2;

end;
for k holds P[k] from INDUCT:sch 1(A1,A2);
hence thesis;

end;

Adam Naumowicz, Artur Korni lowicz, Adam Grabowski Institute of Informatics, University of Bialystok, Poland

Mizar Hands-on Tutorial 45 / 51

Running the system

Logical modules (passes) of the Mizar verifier

Parser (Tokenizer + identification of so-called “long terms”)
Analyzer (+ Reasoner)
Checker (Preparator, Prechecker, Equalizer, Unifier) +
Schematizer

Communication with the database

Accommodator
Exporter + Transferer

Adam Naumowicz, Artur Korni lowicz, Adam Grabowski Institute of Informatics, University of Bialystok, Poland

Mizar Hands-on Tutorial 46 / 51

Running the system – ctd.

The interface (CLI, Emacs Mizar Mode by Josef Urban, “remote
processing”)

The way Mizar reports errors resembles a compiler’s errors and
warnings
Top-down approach
Stepwise refinement
It’s possible to check correctness of incomplete texts
One can postpone a proof or its more complicated part

Adam Naumowicz, Artur Korni lowicz, Adam Grabowski Institute of Informatics, University of Bialystok, Poland

Mizar Hands-on Tutorial 47 / 51

Enhancing Mizar texts

Utilities detecting irrelevant parts of proofs

relprem

relinfer

reliters

trivdemo

...

Adam Naumowicz, Artur Korni lowicz, Adam Grabowski Institute of Informatics, University of Bialystok, Poland

Mizar Hands-on Tutorial 48 / 51

Importing notions from the library

The structure of Mizar input files
environ

.....
begin

.....

Library directives
vocabularies (using symbols)
constructors (using introduced objects)
notations (using notations of objects)
theorems (referencing theorems)
schemes (referencing schemes)
definitions (automated unfolding of definitions in Reasoner)
equalities (importing definitions of terms defined with equals into
the Checker)
expansions (importing definitional theorems of predicates into the
Checker)
registrations (automated processing of adjectives)
requirements (using built-in enhancements for certain constructors,
e.g. complex numbers)

Mizar Using a local databaseAdam Naumowicz, Artur Korni lowicz, Adam Grabowski Institute of Informatics, University of Bialystok, Poland

Mizar Hands-on Tutorial 49 / 51

Miscelanea

Formalized Mathematics - FM (http://mizar.org/fm)

XML-ized presentation of Mizar articles
(http://mizar.uwb.edu.pl/version/current/html)

MMLQuery - search engine for MML
(http://mmlquery.mizar.org)

Mizar TWiki (http://wiki.mizar.org)

Mizar mode for GNU Emacs
(http://wiki.mizar.org/twiki/bin/view/Mizar/MizarMode)

MizAR: parallelized AI/ATP, verification, and presentation service
for Mizar (http://mizar.cs.ualberta.ca/m̃ptp/MizAR.html)

Adam Naumowicz, Artur Korni lowicz, Adam Grabowski Institute of Informatics, University of Bialystok, Poland

Mizar Hands-on Tutorial 50 / 51

http://mizar.org/fm
http://mizar.uwb.edu.pl/version/current/html
http://mmlquery.mizar.org
http://wiki.mizar.org
http://wiki.mizar.org/twiki/bin/view/Mizar/MizarMode

Recommended reading

Grzegorz Bancerek et al., Mizar: State-of-the-Art and Beyond.
CICM 2015, LNAI 9150, pp. 261-279, 2015
A. Grabowski, A. Kornilowicz and A. Naumowicz, Mizar in a
Nutshell, Journal of Formalized Reasoning 3(2), pp. 153-245, 2010.
(http://jfr.cib.unibo.it/article/download/1980/1356)
A. Trybulec, Checker (a collection of e-mails compiled by F.
Wiedijk). (http://www.cs.ru.nl/~freek/mizar/by.ps.gz)
F. Wiedijk, Mizar: An Impression.
(http://www.cs.ru.nl/~freek/mizar/mizarintro.ps.gz)
F. Wiedijk, Writing a Mizar article in nine easy steps.
(http://www.cs.ru.nl/~freek/mizar/mizman.ps.gz)
F. Wiedijk (ed.), The Seventeen Provers of the World. LNAI 3600,
Springer Verlag 2006.
(http://www.cs.ru.nl/~freek/comparison/comparison.pdf)
M. Wenzel and F. Wiedijk, A comparison of the mathematical proof
languages Mizar and Isar.
(http://www4.in.tum.de/~wenzelm/papers/romantic.pdf)

Adam Naumowicz, Artur Korni lowicz, Adam Grabowski Institute of Informatics, University of Bialystok, Poland

Mizar Hands-on Tutorial 51 / 51

http://jfr.cib.unibo.it/article/download/1980/1356
http://www.cs.ru.nl/~freek/mizar/by.ps.gz
http://www.cs.ru.nl/~freek/mizar/mizarintro.ps.gz
http://www.cs.ru.nl/~freek/mizar/mizman.ps.gz
http://www.cs.ru.nl/~freek/comparison/comparison.pdf
http://www4.in.tum.de/~wenzelm/papers/romantic.pdf

