JOURNAL OF FORMALIZED MATHEMATICS
Volume8,  Released 1996,  Published 2003
Inst. of Computer Science, Univ. of Bialystok

Irreducible and Prime Elements]

Beata Madras

Summary. In the paper open and order generating subsets are defined. Irreducible
and prime elements are also defined. The article includes definitions and facts presented in
[16, pp. 68-72].
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The articles([22],[[18],[[26],[[24] [[15],[27] [ 11],[28] [ 9], [25]/ [21]/12] [ }4] [[11]/T12] [ T10] (]3],
[23], [20], [5], [18], [€], [14], [30], [12], [[], [14], [29], andI[8] provide the notation and terminology
for this paper.

1. PRELIMINARIES

In this papeL is a lattice and is an element of.
The schemélonUnigExD1deals with a non empty relational structuie a subsetB of 4, a
non empty subsef of 4, and a binary predicat®, and states that:
There exists a functiof from 3 into C such that for every elemestof 4 if e € B,
then there exists an elemantf 4 such thau € ¢ andu = f(e) andP[e,u]
provided the parameters meet the following requirement:
e For every element of 4 such thate € B there exists an elementof 4 such that
ue Cand?leul.
Let L be a lattice, leA be a non empty subset bf let f be a function fromA into A, and letn
be an element ai. Thenf" is a function fromA into A.
LetL be a lattice, le€, D be non empty subsets bf let f be a function fronC into D, and let
c be an element of. Thenf(c) is an element of.
LetL be a non empty poset. One can check that every chdiriofiltered and directed.
One can verify that there exists a lattice which is strict, continuous, distributive, and lower-
bounded.
Next we state three propositions:

(1) LetS T be semilattices andl be a map fronSinto T. Thenf is meet-preserving if and
only if for all elementsk, y of Sholds f (xMy) = f(x) 1 f(y).

(2) LetS T be sup-semilattices arfdbe a map fronSinto T. Thenf is join-preserving if and
only if for all elementsk, y of Sholds f (xLy) = f(x) L f(y).

(3) LetS T be lattices and be a map fromSinto T. Suppose€T is distributive andf is
meet-preserving, join-preserving, and one-to-one. Thisrdistributive.

Let S, T be complete lattices. Note that there exists a map f®mto T which is sups-
preserving.
Next we state the proposition
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(4) LetS T be complete lattices anfdbe a sups-preserving map frddinto T. Supposd is
meet-continuous anflis meet-preserving and one-to-one. Ti&e meet-continuous.

2. OPEN SETS

LetL be a non empty reflexive relational structure anddte a subset df. We say thaX is open
if and only if:

(Def. 1) For every elementof L such thai € X there exists an elemeynbf L such thaty € X and
y < X.

We now state two propositions:

(5) LetL be an up-complete lattice aixdbe an upper subset &f ThenX is open if and only
if for every elemenk of L such thai € X holds|x meetsX.

(6) LetL be an up-complete lattice atxdbe an upper subset of ThenX is open if and only
if X =U{1x xranges over elements bf x € X}.

Let L be an up-complete lower-bounded lattice. One can verify that there exists a filter of
which is open.
We now state three propositions:

(7) Forevery lower-bounded continuous latticand for every elementof L holds{xis open.

(8) LetL be alower-bounded continuous lattice ang be elements of. If x <y, then there
exists an open filteF of L such thay € F andF C fx.

(9) LetL be a complete latticeX be an open upper subsetlgfandx be an element df. If
x € X®, then there exists an elemantof L such thak < mandmis maximal inX®.

3. IRREDUCIBLE ELEMENTS

Let G be a non empty relational structure anddelbe an element o6. We say thag is meet-
irreducible if and only if:

(Def. 2) For all elements, y of G such thag = xMy holdsx=gory=g.

We introducey is irreducible as a synonym gdfis meet-irreducible.
Let G be a non empty relational structure andddie an element os. We say thag is join-
irreducible if and only if:

(Def. 3) For all elementg, y of G such thag = xUy holdsx=gory=g.

LetL be a non empty relational structure. The functor (RRyields a subset df and is defined
by:

(Def. 4) For every elementof L holdsx € IRR(L) iff xis irreducible.

We now state the proposition

(10) For every upper-bounded antisymmetric non empty relational structuith g.1.b.’s holds
T is irreducible.

LetL be an upper-bounded antisymmetric non empty relational structure with g.l.b.’s. Note that
there exists an element bfwhich is irreducible.
The following four propositions are true:

(11) LetL be a semilattice and be an element of. Thenx is irreducible if and only if for
every finite non empty subsatof L such tha = inf A holdsx € A.
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(12) For every latticd and for every elemertof L such thatl \ {I} is a filter ofL holdsl is
irreducible.

(13) LetL be a lattice p be an element df, andF be a filter ofL. If p is maximal inF¢, then
pis irreducible.

(14) LetL be a lower-bounded continuous lattice and/ be elements of. Supposey £ x.
Then there exists an elemegmbf L such thatp is irreducible anc < p andy £ p.

4, ORDER GENERATING SETS

LetL be a non empty relational structure andddie a subset df. We say thaX is order-generating
if and only if:

(Def. 5) For every elementof L holds infTxN X exists inL andx = inf(TxN X).

We now state several propositions:

(15) LetL be an up-complete lower-bounded lattice ahtle a subset of. ThenX is order-
generating if and only if for every elemehtof L there exists a subsat of X such that

I =Y.

(16) LetL be an up-complete lower-bounded lattice ahtde a subset of. ThenX is order-
generating if and only if for every subsétof L such thatX C Y and for every subset of Y
holds[].Z € Y holds the carrier of =Y.

(17) LetL be an up-complete lower-bounded lattice ahtle a subset of. ThenX is order-
generating if and only if for all elements, |, of L such that, £ |1 there exists an elemept
of L such thatp € X andl; < pandl, £ p.

(18) LetL be a lower-bounded continuous lattice ahbe a subset df. If X = IRR(L)\ { T},
thenX is order-generating.

(19) LetL be a lower-bounded continuous lattice aXdY be subsets of. If X is order-
generating anX CY, thenY is order-generating.

5. PRIME ELEMENTS

Let L be a non empty relational structure andllee an element df. We say that is prime if and
only if:

(Def. 6) For all elements, y of L such thakmy < holdsx <1 ory <I.

Let L be a non empty relational structure. The functor PR[{MEyielding a subset oL is
defined as follows:

(Def. 7) For every elementof L holdsx € PRIME(L) iff x is prime.

LetL be a non empty relational structure andllbe an element df. We say that is co-prime
if and only if:

(Def. 8) 1~ is prime.
The following propositions are true:
(20) For every upper-bounded antisymmetric non empty relational strucholels T, is prime.

(21) For every lower-bounded antisymmetric non empty relational strutttwdds L, is co-
prime.
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LetL be an upper-bounded antisymmetric non empty relational structure. Note that there exists
an element of. which is prime.
Next we state a number of propositions:

(22) LetL be a semilattice andbe an element of. Thenl is prime if and only if for every
finite non empty subsét of L such that > inf Athere exists an elemeabf L such thab e A
andl > a.

(23) LetL be a sup-semilattice andbe an element df. Thenx is co-prime if and only if for
every finite non empty subsétof L such thatx < supA there exists an elemeatof L such
thatac Aandx < a.

(24) For every latticd and for every elementof L such that is prime holdd is irreducible.

(25) Letgivenl. Thenl is prime if and only if for every set and for every mag from L into
28} such that for every elememtof L holds f(p) = 0 iff p<| holds f is meet-preserving
and join-preserving.

(26) LetL be an upper-bounded lattice ahtle an element df. If | £ T, thenl is prime iff
(11)Cis afilter ofL.

(27) For every distributive lattice and for every elemertof L holds| is prime iff | is irre-
ducible.

(28) For every distributive lattick holds PRIMEL) = IRR(L).

(29) LetL be a Boolean lattice arlcbe an element df. Supposé # T. Thenl is prime if and
only if for every elemenk of L such thai > | holdsx = T|.

(30) LetL be a continuous distributive lower-bounded lattice hbd an element df. Suppose
| # TL. Thenl is prime if and only if there exists an open filtérof L such that is maximal
in F€,

(31) LetL be arelational structure antbe a subset df. ThenXx e carrier ofL IS @ map fromL
into 2{20}'

(82) Let L be a non empty relational structure aml x be elements ofL. Then
X(ip)c,the carrier ofl.(X) = 0 if and only if x < p.

(33) LetL be an upper-bounded latticEpe a map froni into 2{§0}, andp be a prime element
of L. SUppos& | pjc ine carier of. = f- Thenf is meet-preserving and join-preserving.

(34) Forevery complete lattidesuch that PRIMEL) is order-generating holdsis distributive
and meet-continuous.

(35) For every lower-bounded continuous lattickoldsL is distributive iff PRIMEL) is order-
generating.

(36) For every lower-bounded continuous latticholdsL is distributive iffL is Heyting.

(87) LetL be a continuous complete lattice. Suppose that for every eldnoéit there exists
a subseX of L such that = supX and for every element of L such thatx € X holdsx is
co-prime. Let be an element df. Thenl = ||, ({| N PRIME(L®P)).

(38) LetL be a complete lattice. Thdnis completely-distributive if and only if the following
conditions are satisfied:
(i) Lis continuous, and
(i)  for every element of L there exists a subset of L such thatt = supX and for every
elementx of L such that € X holdsx is co-prime.

(39) LetL be a complete lattice. Thenis completely-distributive if and only if is distributive
and continuous and®? is continuous.
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