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Summary. In the paper open and order generating subsets are defined. Irreducible
and prime elements are also defined. The article includes definitions and facts presented in
[16, pp. 68–72].
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The articles [22], [13], [26], [24], [15], [27], [1], [28], [9], [25], [21], [2], [4], [11], [12], [10], [3],
[23], [20], [5], [18], [6], [14], [30], [19], [7], [17], [29], and [8] provide the notation and terminology
for this paper.

1. PRELIMINARIES

In this paperL is a lattice andl is an element ofL.
The schemeNonUniqExD1deals with a non empty relational structureA , a subsetB of A , a

non empty subsetC of A , and a binary predicateP , and states that:
There exists a functionf from B into C such that for every elemente of A if e∈ B,
then there exists an elementu of A such thatu∈ C andu = f (e) andP [e,u]

provided the parameters meet the following requirement:
• For every elemente of A such thate∈ B there exists an elementu of A such that

u∈ C andP [e,u].
Let L be a lattice, letA be a non empty subset ofL, let f be a function fromA into A, and letn

be an element ofN. Then f n is a function fromA into A.
Let L be a lattice, letC, D be non empty subsets ofL, let f be a function fromC into D, and let

c be an element ofC. Then f (c) is an element ofL.
Let L be a non empty poset. One can check that every chain ofL is filtered and directed.
One can verify that there exists a lattice which is strict, continuous, distributive, and lower-

bounded.
Next we state three propositions:

(1) Let S, T be semilattices andf be a map fromS into T. Then f is meet-preserving if and
only if for all elementsx, y of Sholds f (xuy) = f (x)u f (y).

(2) LetS, T be sup-semilattices andf be a map fromS into T. Then f is join-preserving if and
only if for all elementsx, y of Sholds f (xty) = f (x)t f (y).

(3) Let S, T be lattices andf be a map fromS into T. SupposeT is distributive andf is
meet-preserving, join-preserving, and one-to-one. ThenS is distributive.

Let S, T be complete lattices. Note that there exists a map fromS into T which is sups-
preserving.

Next we state the proposition
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(4) Let S, T be complete lattices andf be a sups-preserving map fromS into T. SupposeT is
meet-continuous andf is meet-preserving and one-to-one. ThenS is meet-continuous.

2. OPEN SETS

Let L be a non empty reflexive relational structure and letX be a subset ofL. We say thatX is open
if and only if:

(Def. 1) For every elementx of L such thatx∈ X there exists an elementy of L such thaty∈ X and
y� x.

We now state two propositions:

(5) Let L be an up-complete lattice andX be an upper subset ofL. ThenX is open if and only
if for every elementx of L such thatx∈ X holds↓↓x meetsX.

(6) Let L be an up-complete lattice andX be an upper subset ofL. ThenX is open if and only
if X =

⋃
{↑↑x;x ranges over elements ofL: x∈ X}.

Let L be an up-complete lower-bounded lattice. One can verify that there exists a filter ofL
which is open.

We now state three propositions:

(7) For every lower-bounded continuous latticeL and for every elementx of L holds↑↑x is open.

(8) LetL be a lower-bounded continuous lattice andx, y be elements ofL. If x� y, then there
exists an open filterF of L such thaty∈ F andF ⊆ ↑↑x.

(9) Let L be a complete lattice,X be an open upper subset ofL, andx be an element ofL. If
x∈ Xc, then there exists an elementm of L such thatx≤m andm is maximal inXc.

3. IRREDUCIBLE ELEMENTS

Let G be a non empty relational structure and letg be an element ofG. We say thatg is meet-
irreducible if and only if:

(Def. 2) For all elementsx, y of G such thatg = xuy holdsx = g or y = g.

We introduceg is irreducible as a synonym ofg is meet-irreducible.
Let G be a non empty relational structure and letg be an element ofG. We say thatg is join-

irreducible if and only if:

(Def. 3) For all elementsx, y of G such thatg = xty holdsx = g or y = g.

Let L be a non empty relational structure. The functor IRR(L) yields a subset ofL and is defined
by:

(Def. 4) For every elementx of L holdsx∈ IRR(L) iff x is irreducible.

We now state the proposition

(10) For every upper-bounded antisymmetric non empty relational structureL with g.l.b.’s holds
>L is irreducible.

Let L be an upper-bounded antisymmetric non empty relational structure with g.l.b.’s. Note that
there exists an element ofL which is irreducible.

The following four propositions are true:

(11) Let L be a semilattice andx be an element ofL. Thenx is irreducible if and only if for
every finite non empty subsetA of L such thatx = inf A holdsx∈ A.
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(12) For every latticeL and for every elementl of L such that↑l \ {l} is a filter ofL holdsl is
irreducible.

(13) LetL be a lattice,p be an element ofL, andF be a filter ofL. If p is maximal inFc, then
p is irreducible.

(14) Let L be a lower-bounded continuous lattice andx, y be elements ofL. Supposey 6≤ x.
Then there exists an elementp of L such thatp is irreducible andx≤ p andy 6≤ p.

4. ORDER GENERATING SETS

LetL be a non empty relational structure and letX be a subset ofL. We say thatX is order-generating
if and only if:

(Def. 5) For every elementx of L holds inf↑x∩X exists inL andx = inf(↑x∩X).

We now state several propositions:

(15) LetL be an up-complete lower-bounded lattice andX be a subset ofL. ThenX is order-
generating if and only if for every elementl of L there exists a subsetY of X such that
l = d−eLY.

(16) LetL be an up-complete lower-bounded lattice andX be a subset ofL. ThenX is order-
generating if and only if for every subsetY of L such thatX ⊆Y and for every subsetZ of Y
holdsd−eLZ ∈Y holds the carrier ofL = Y.

(17) LetL be an up-complete lower-bounded lattice andX be a subset ofL. ThenX is order-
generating if and only if for all elementsl1, l2 of L such thatl2 6≤ l1 there exists an elementp
of L such thatp∈ X andl1 ≤ p andl2 6≤ p.

(18) LetL be a lower-bounded continuous lattice andX be a subset ofL. If X = IRR(L)\{>L},
thenX is order-generating.

(19) Let L be a lower-bounded continuous lattice andX, Y be subsets ofL. If X is order-
generating andX ⊆Y, thenY is order-generating.

5. PRIME ELEMENTS

Let L be a non empty relational structure and letl be an element ofL. We say thatl is prime if and
only if:

(Def. 6) For all elementsx, y of L such thatxuy≤ l holdsx≤ l or y≤ l .

Let L be a non empty relational structure. The functor PRIME(L) yielding a subset ofL is
defined as follows:

(Def. 7) For every elementx of L holdsx∈ PRIME(L) iff x is prime.

Let L be a non empty relational structure and letl be an element ofL. We say thatl is co-prime
if and only if:

(Def. 8) l` is prime.

The following propositions are true:

(20) For every upper-bounded antisymmetric non empty relational structureL holds>L is prime.

(21) For every lower-bounded antisymmetric non empty relational structureL holds⊥L is co-
prime.
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Let L be an upper-bounded antisymmetric non empty relational structure. Note that there exists
an element ofL which is prime.

Next we state a number of propositions:

(22) Let L be a semilattice andl be an element ofL. Thenl is prime if and only if for every
finite non empty subsetA of L such thatl ≥ inf A there exists an elementa of L such thata∈A
andl ≥ a.

(23) LetL be a sup-semilattice andx be an element ofL. Thenx is co-prime if and only if for
every finite non empty subsetA of L such thatx≤ supA there exists an elementa of L such
thata∈ A andx≤ a.

(24) For every latticeL and for every elementl of L such thatl is prime holdsl is irreducible.

(25) Let givenl . Thenl is prime if and only if for every setx and for every mapf from L into

2{x}⊆ such that for every elementp of L holds f (p) = /0 iff p≤ l holds f is meet-preserving
and join-preserving.

(26) LetL be an upper-bounded lattice andl be an element ofL. If l 6= >L, thenl is prime iff
(↓l)c is a filter ofL.

(27) For every distributive latticeL and for every elementl of L holds l is prime iff l is irre-
ducible.

(28) For every distributive latticeL holds PRIME(L) = IRR(L).

(29) LetL be a Boolean lattice andl be an element ofL. Supposel 6=>L. Thenl is prime if and
only if for every elementx of L such thatx > l holdsx =>L.

(30) LetL be a continuous distributive lower-bounded lattice andl be an element ofL. Suppose
l 6=>L. Thenl is prime if and only if there exists an open filterF of L such thatl is maximal
in Fc.

(31) LetL be a relational structure andX be a subset ofL. ThenχX,the carrier ofL is a map fromL

into 2{ /0}
⊆ .

(32) Let L be a non empty relational structure andp, x be elements ofL. Then
χ(↓p)c,the carrier ofL(x) = /0 if and only if x≤ p.

(33) LetL be an upper-bounded lattice,f be a map fromL into 2{ /0}
⊆ , andp be a prime element

of L. Supposeχ(↓p)c,the carrier ofL = f . Then f is meet-preserving and join-preserving.

(34) For every complete latticeL such that PRIME(L) is order-generating holdsL is distributive
and meet-continuous.

(35) For every lower-bounded continuous latticeL holdsL is distributive iff PRIME(L) is order-
generating.

(36) For every lower-bounded continuous latticeL holdsL is distributive iffL is Heyting.

(37) LetL be a continuous complete lattice. Suppose that for every elementl of L there exists
a subsetX of L such thatl = supX and for every elementx of L such thatx ∈ X holdsx is
co-prime. Letl be an element ofL. Thenl =

⊔
L(↓↓l ∩PRIME(Lop)).

(38) LetL be a complete lattice. ThenL is completely-distributive if and only if the following
conditions are satisfied:

(i) L is continuous, and

(ii) for every elementl of L there exists a subsetX of L such thatl = supX and for every
elementx of L such thatx∈ X holdsx is co-prime.

(39) LetL be a complete lattice. ThenL is completely-distributive if and only ifL is distributive
and continuous andLop is continuous.
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