Irreducible and Prime Elements¹

Beata Madras

Summary. In the paper open and order generating subsets are defined. Irreducible and prime elements are also defined. The article includes definitions and facts presented in [16, pp. 68–72].

MML Identifier: WAYBEL_6.

WWW: http://mizar.org/JFM/Vol8/waybel_6.html

The articles [22], [13], [26], [24], [15], [27], [1], [28], [9], [25], [21], [2], [4], [11], [12], [10], [3], [23], [20], [5], [18], [6], [14], [30], [19], [7], [17], [29], and [8] provide the notation and terminology for this paper.

1. Preliminaries

In this paper L is a lattice and l is an element of L.

The scheme NonUniqExD1 deals with a non empty relational structure \mathcal{A} , a subset \mathcal{B} of \mathcal{A} , a non empty subset \mathcal{C} of \mathcal{A} , and a binary predicate \mathcal{P} , and states that:

There exists a function f from $\mathcal B$ into $\mathcal C$ such that for every element e of $\mathcal A$ if $e \in \mathcal B$, then there exists an element u of $\mathcal A$ such that $u \in \mathcal C$ and u = f(e) and $\mathcal P[e,u]$ provided the parameters meet the following requirement:

• For every element e of \mathcal{A} such that $e \in \mathcal{B}$ there exists an element u of \mathcal{A} such that $u \in \mathcal{C}$ and $\mathcal{P}[e, u]$.

Let L be a lattice, let A be a non empty subset of L, let f be a function from A into A, and let n be an element of \mathbb{N} . Then f^n is a function from A into A.

Let L be a lattice, let C, D be non empty subsets of L, let f be a function from C into D, and let c be an element of C. Then f(c) is an element of L.

Let L be a non empty poset. One can check that every chain of L is filtered and directed.

One can verify that there exists a lattice which is strict, continuous, distributive, and lower-bounded.

Next we state three propositions:

- (1) Let S, T be semilattices and f be a map from S into T. Then f is meet-preserving if and only if for all elements x, y of S holds $f(x \sqcap y) = f(x) \sqcap f(y)$.
- (2) Let S, T be sup-semilattices and f be a map from S into T. Then f is join-preserving if and only if for all elements x, y of S holds $f(x \sqcup y) = f(x) \sqcup f(y)$.
- (3) Let S, T be lattices and f be a map from S into T. Suppose T is distributive and f is meet-preserving, join-preserving, and one-to-one. Then S is distributive.
- Let S, T be complete lattices. Note that there exists a map from S into T which is supspreserving.

1

Next we state the proposition

© Association of Mizar Users

¹This work has been partially supported by the Office of Naval Research Grant N00014-95-1-1336.

(4) Let S, T be complete lattices and f be a sups-preserving map from S into T. Suppose T is meet-continuous and f is meet-preserving and one-to-one. Then S is meet-continuous.

2. OPEN SETS

Let *L* be a non empty reflexive relational structure and let *X* be a subset of *L*. We say that *X* is open if and only if:

(Def. 1) For every element x of L such that $x \in X$ there exists an element y of L such that $y \in X$ and $y \ll x$.

We now state two propositions:

- (5) Let *L* be an up-complete lattice and *X* be an upper subset of *L*. Then *X* is open if and only if for every element *x* of *L* such that $x \in X$ holds $\downarrow x$ meets *X*.
- (6) Let *L* be an up-complete lattice and *X* be an upper subset of *L*. Then *X* is open if and only if $X = \bigcup \{ \uparrow x; x \text{ ranges over elements of } L: x \in X \}$.

Let L be an up-complete lower-bounded lattice. One can verify that there exists a filter of L which is open.

We now state three propositions:

- (7) For every lower-bounded continuous lattice L and for every element x of L holds $\uparrow x$ is open.
- (8) Let *L* be a lower-bounded continuous lattice and *x*, *y* be elements of *L*. If $x \ll y$, then there exists an open filter *F* of *L* such that $y \in F$ and $F \subseteq \uparrow x$.
- (9) Let *L* be a complete lattice, *X* be an open upper subset of *L*, and *x* be an element of *L*. If $x \in X^c$, then there exists an element *m* of *L* such that $x \le m$ and *m* is maximal in X^c .

3. IRREDUCIBLE ELEMENTS

Let G be a non empty relational structure and let g be an element of G. We say that g is meet-irreducible if and only if:

(Def. 2) For all elements x, y of G such that $g = x \sqcap y$ holds x = g or y = g.

We introduce g is irreducible as a synonym of g is meet-irreducible.

Let G be a non empty relational structure and let g be an element of G. We say that g is join-irreducible if and only if:

(Def. 3) For all elements x, y of G such that $g = x \sqcup y$ holds x = g or y = g.

Let L be a non empty relational structure. The functor IRR(L) yields a subset of L and is defined by:

(Def. 4) For every element x of L holds $x \in IRR(L)$ iff x is irreducible.

We now state the proposition

(10) For every upper-bounded antisymmetric non empty relational structure L with g.l.b.'s holds \top_L is irreducible.

Let L be an upper-bounded antisymmetric non empty relational structure with g.l.b.'s. Note that there exists an element of L which is irreducible.

The following four propositions are true:

(11) Let L be a semilattice and x be an element of L. Then x is irreducible if and only if for every finite non empty subset A of L such that $x = \inf A$ holds $x \in A$.

- (12) For every lattice L and for every element l of L such that $\uparrow l \setminus \{l\}$ is a filter of L holds l is irreducible.
- (13) Let L be a lattice, p be an element of L, and F be a filter of L. If p is maximal in F^c , then p is irreducible.
- (14) Let L be a lower-bounded continuous lattice and x, y be elements of L. Suppose $y \le x$. Then there exists an element p of L such that p is irreducible and $x \le p$ and $y \le p$.

4. Order generating sets

Let *L* be a non empty relational structure and let *X* be a subset of *L*. We say that *X* is order-generating if and only if:

(Def. 5) For every element x of L holds inf $\uparrow x \cap X$ exists in L and $x = \inf(\uparrow x \cap X)$.

We now state several propositions:

- (15) Let L be an up-complete lower-bounded lattice and X be a subset of L. Then X is order-generating if and only if for every element l of L there exists a subset Y of X such that $l = \bigcap_L Y$.
- (16) Let L be an up-complete lower-bounded lattice and X be a subset of L. Then X is order-generating if and only if for every subset Y of L such that $X \subseteq Y$ and for every subset Z of Y holds $\bigcap_L Z \in Y$ holds the carrier of L = Y.
- (17) Let L be an up-complete lower-bounded lattice and X be a subset of L. Then X is order-generating if and only if for all elements l_1 , l_2 of L such that $l_2 \not \leq l_1$ there exists an element p of L such that $p \in X$ and $l_1 \leq p$ and $l_2 \not \leq p$.
- (18) Let *L* be a lower-bounded continuous lattice and *X* be a subset of *L*. If $X = IRR(L) \setminus \{ \top_L \}$, then *X* is order-generating.
- (19) Let L be a lower-bounded continuous lattice and X, Y be subsets of L. If X is order-generating and $X \subseteq Y$, then Y is order-generating.

5. PRIME ELEMENTS

Let L be a non empty relational structure and let l be an element of L. We say that l is prime if and only if:

(Def. 6) For all elements x, y of L such that $x \sqcap y \leq l$ holds $x \leq l$ or $y \leq l$.

Let L be a non empty relational structure. The functor PRIME(L) yielding a subset of L is defined as follows:

(Def. 7) For every element x of L holds $x \in PRIME(L)$ iff x is prime.

Let L be a non empty relational structure and let l be an element of L. We say that l is co-prime if and only if:

(Def. 8) l^{\sim} is prime.

The following propositions are true:

- (20) For every upper-bounded antisymmetric non empty relational structure L holds \top_L is prime.
- (21) For every lower-bounded antisymmetric non empty relational structure L holds \perp_L is coprime.

Let *L* be an upper-bounded antisymmetric non empty relational structure. Note that there exists an element of *L* which is prime.

Next we state a number of propositions:

- (22) Let L be a semilattice and l be an element of L. Then l is prime if and only if for every finite non empty subset A of L such that $l \ge \inf A$ there exists an element a of L such that $a \in A$ and $l \ge a$.
- (23) Let L be a sup-semilattice and x be an element of L. Then x is co-prime if and only if for every finite non empty subset A of L such that $x \le \sup A$ there exists an element a of L such that $a \in A$ and $x \le a$.
- (24) For every lattice L and for every element l of L such that l is prime holds l is irreducible.
- (25) Let given l. Then l is prime if and only if for every set x and for every map f from L into $2^{\{x\}}_{\subseteq}$ such that for every element p of L holds $f(p) = \emptyset$ iff $p \le l$ holds f is meet-preserving and join-preserving.
- (26) Let L be an upper-bounded lattice and l be an element of L. If $l \neq \top_L$, then l is prime iff $(\downarrow l)^c$ is a filter of L.
- (27) For every distributive lattice L and for every element l of L holds l is prime iff l is irreducible.
- (28) For every distributive lattice L holds PRIME(L) = IRR(L).
- (29) Let *L* be a Boolean lattice and *l* be an element of *L*. Suppose $l \neq \top_L$. Then *l* is prime if and only if for every element *x* of *L* such that x > l holds $x = \top_L$.
- (30) Let L be a continuous distributive lower-bounded lattice and l be an element of L. Suppose $l \neq \top_L$. Then l is prime if and only if there exists an open filter F of L such that l is maximal in F^c .
- (31) Let L be a relational structure and X be a subset of L. Then $\chi_{X,\text{the carrier of }L}$ is a map from L into $2^{\{\emptyset\}}_{\subseteq}$.
- (32) Let L be a non empty relational structure and p, x be elements of L. Then $\chi_{(\downarrow p)^c, \text{the carrier of } L}(x) = \emptyset$ if and only if $x \leq p$.
- (33) Let L be an upper-bounded lattice, f be a map from L into $2 \subseteq \{0\}$, and p be a prime element of L. Suppose $\chi_{(\downarrow p)^c, \text{the carrier of } L} = f$. Then f is meet-preserving and join-preserving.
- (34) For every complete lattice L such that PRIME(L) is order-generating holds L is distributive and meet-continuous.
- (35) For every lower-bounded continuous lattice L holds L is distributive iff PRIME(L) is order-generating.
- (36) For every lower-bounded continuous lattice L holds L is distributive iff L is Heyting.
- (37) Let L be a continuous complete lattice. Suppose that for every element l of L there exists a subset X of L such that $l = \sup X$ and for every element x of L such that $x \in X$ holds x is co-prime. Let l be an element of L. Then $l = \bigsqcup_{L} (\mathop{\downarrow} l \cap \mathsf{PRIME}(L^{\mathsf{op}}))$.
- (38) Let *L* be a complete lattice. Then *L* is completely-distributive if and only if the following conditions are satisfied:
 - (i) L is continuous, and
- (ii) for every element l of L there exists a subset X of L such that $l = \sup X$ and for every element x of L such that $x \in X$ holds x is co-prime.
- (39) Let L be a complete lattice. Then L is completely-distributive if and only if L is distributive and continuous and L^{op} is continuous.

REFERENCES

- [1] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinall.
- [2] Grzegorz Bancerek. König's theorem. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/card_3.html.
- [3] Grzegorz Bancerek. Cartesian product of functions. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/funct_6.html.
- [4] Grzegorz Bancerek. Complete lattices. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/lattice3.html.
- [5] Grzegorz Bancerek. Bounds in posets and relational substructures. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/ JFM/Vol8/yellow_0.html.
- [6] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/ JFM/Vol8/waybel_0.html.
- [7] Grzegorz Bancerek. The "way-below" relation. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/waybel_ 3.html.
- [8] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/funct_7.html.
- [9] Józef Białas. Group and field definitions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/realsetl. html.
- [10] Czesław Byliński. Basic functions and operations on functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Vol1/funct_3.html.
- [11] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [12] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [13] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.
- [14] Czesław Byliński. Galois connections. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/waybel_1.html.
- [15] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/finset_1.html.
- [16] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott. A Compendium of Continuous Lattices. Springer-Verlag, Berlin, Heidelberg, New York, 1980.
- [17] Adam Grabowski. Auxiliary and approximating relations. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/waybel_4.html.
- [18] Adam Grabowski and Robert Milewski. Boolean posets, posets under inclusion and products of relational structures. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/yellow_1.html.
- [19] Artur Korniłowicz. Meet continuous lattices. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/waybel_ 2.html.
- [20] Beata Madras. Product of family of universal algebras. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vo15/pralg_1.html.
- [21] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/pre_topo.html.
- [22] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [23] Andrzej Trybulec. Many-sorted sets. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/pboole.html.
- [24] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [25] Wojciech A. Trybulec. Partially ordered sets. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/orders_1.html.
- [26] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [27] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.
- [28] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relat_2.html.
- [29] Mariusz Żynel. The equational characterization of continuous lattices. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/waybel_5.html.

[30] Mariusz Żynel and Czesław Byliński. Properties of relational structures, posets, lattices and maps. *Journal of Formalized Mathematics*, 8, 1996. http://mizar.org/JFM/Vol8/yellow_2.html.

Received December 1, 1996

Published January 2, 2004
