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Summary. This article completes the Mizar formalization of Chapter I, Section 2
from [13]. After presenting some preliminary material (not all of which is later used in this
article) we give the proof of theorem 2.7 (i), p.60. We do not follow the hint from [13]
suggesting using the equations 2.3, p. 58. The proof is taken directly from the definition of
continuous lattice. The goal of the last section is to prove the correspondence between the
set of all congruences of a continuous lattice and the set of all kernel operators of the lattice
which preserve directed sups (Corollary 2.13).

MML Identifier: WAYBEL20.

WWW: http://mizar.org/JFM/Voll0/waybel20.html

The articles([211],[[10],.124],[125],[126], [17],127]/17] 9], 18],.[12], 120] [ [19]/ 122] [ [6] L11]/[23],
[2], [@8], [3], [14], [28], [15], [4], [11], [5], and [16] provide the notation and terminology for this
paper.

1. PRELIMINARIES
The following propositions are true:

(1) Forevery seX and for every subs@&of idx holdsmy (S) = To(S).

(2) For all non empty set¥, Y and for every functiorf from X intoY holds[: f, f ]~(idy) is
an equivalence relation .

LetLs, Lo, Ty, T2 be relational structures, ldtbe a map fromi; into T;, and letg be a map
from Ly into To. Then[. f, g] is a map from: L1, Lo into [ Ty, T2 .
The following propositions are true:

(3) For all functionsf, g and for every seX holds m([: f, g]°X) C fom(X) and m(f: f,
g]°X) C g°m(X).

(4) For all functionsf, g and for every seX such thatX C domf, domg:] holds ([ f,
g]°X) = fomy(X) andm([: f, g1°X) = g°m(X).

(5) For every non empty antisymmetric relational structsiseich that infd exists inSholdsS
is upper-bounded.

(6) For every non empty antisymmetric relational structBseich that su@ exists inSholds
Sis lower-bounded.

(7) LetLs, L, be antisymmetric non empty relational structures Brizk a subset dfL1, L, .
Ifinf D exists inf:L1, Ly}, then infD = (infry (D), infp(D)).
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(8) LetLy, Lo be antisymmetric non empty relational structures Brizk a subset dfL1, Lo 1.
If supD exists in[: Ly, Ly ], then suf® = (supm (D), suprmp(D)).

(9) Letly, Ly, T1, T2 be antisymmetric non empty relational structurése a map fronl;
into T1, andg be a map fronk, into T,. Supposd is infs-preserving and is infs-preserving.
Then[ f, g] is infs-preserving.

(10) LetLs, Ly, Ty, T, be antisymmetric reflexive non empty relational structufelbe a map
from Lz into T1, andg be a map froni; into T,. Supposef is filtered-infs-preserving angl
is filtered-infs-preserving. Thenf, g is filtered-infs-preserving.

(11) LetL, Ly, Ty, T2 be antisymmetric non empty relational structuriebe a map front.; into
T1, andg be a map fronl, into T,. Supposef is sups-preserving arglis sups-preserving.
Then[: f, g] is sups-preserving.

(12) LetLs, Ly, Ty, T, be antisymmetric reflexive non empty relational structufebe a map
from L; into Ty, andg be a map froni, into T,. Suppose is directed-sups-preserving agd
is directed-sups-preserving. Theh, g is directed-sups-preserving.

(13) LetL be an antisymmetric non empty relational structure Znde a subset ofL, L.
Suppose&X C idine carrier of. @Nd iNfX exists inf:L, L. Then infX € idine carrier ofL-

(14) LetL be an antisymmetric non empty relational structure Znde a subset ofL, L.
Suppose&X C idine carrier of. and supX exists in[:L, L. Then sugX € idie carrier ofL-

(15) LetL, M be non empty relational structures.LiindM are isomorphic and is reflexive,
thenM is reflexive.

(16) LetL, M be non empty relational structuresLliandM are isomorphic and is transitive,
thenM is transitive.

(17) LetL, M be non empty relational structures. SuppbsandM are isomorphic andl is
antisymmetric. TheiM is antisymmetric.

(18) LetL, M be non empty relational structuresLiandM are isomorphic andl is complete,
thenM is complete.

(19) LetL be a non empty transitive relational structure &gk a map fronlL into L. If kis
infs-preserving, thek® is infs-preserving.

(20) LetL be a non empty transitive relational structure &gk a map fronl into L. If kis
filtered-infs-preserving, thekf is filtered-infs-preserving.

(21) LetL be a non empty transitive relational structure &gk a map froni into L. If kis
sups-preserving, theki is sups-preserving.

(22) LetL be a non empty transitive relational structure &gk a map fronl into L. If kis
directed-sups-preserving, thihis directed-sups-preserving.

(24E] Let S T be reflexive antisymmetric non empty relational structuresfabd a map from
Sinto T. If f is filtered-infs-preserving, thehis monotone.

(25) LetS T be non empty relational structures ahdbe a map fronSinto T. Supposef is
monotone. LeKX be a subset db. If X is filtered, thenf°X is filtered.

(26) LetLy, Ly, L3 be non empty relational structures be a map froni; into L, andg be
a map fromLy into L3. Supposef is infs-preserving and is infs-preserving. Theg- f is
infs-preserving.

1 The proposition (23) has been removed.
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(27) LetLy, L, L3 be non empty reflexive antisymmetric relational structufdse a map from
L; into Ly, andg be a map from, into L. Supposef is filtered-infs-preserving and is
filtered-infs-preserving. Theg- f is filtered-infs-preserving.

(28) Letly, Ly, L3 be non empty relational structurelspe a map froni; into L,, andg be a
map fromL, into L. Supposef is sups-preserving anglis sups-preserving. Them f is
sups-preserving.

(29) Letly, Ly, L3 be non empty reflexive antisymmetric relational structufdse a map from
L, into Ly, andg be a map fromi, into L3. Supposef is directed-sups-preserving agds
directed-sups-preserving. Thgnf is directed-sups-preserving.

2. SOME REMARKS ON LATTICE PRODUCT
Next we state several propositions:

(30) Letl be a non empty set arlbe a relational structure yielding nonempty many sorted set
indexed byl. Suppose that for every elemdmnf | holdsJ(i) is a lower-bounded antisym-
metric relational structure. ThenJ is lower-bounded.

(81) Letl be a non empty set ankbe a relational structure yielding nonempty many sorted set
indexed byl. Suppose that for every elemerdf | holdsJ(i) is an upper-bounded antisym-
metric relational structure. ThenJ is upper-bounded.

(32) Letl be a non empty set ankbe a relational structure yielding nonempty many sorted set
indexed byl. Suppose that for every elemédrnf | holdsJ(i) is a lower-bounded antisym-
metric relational structure. Lébe an element df. Then Ls(i) = Ly)-

(33) Letl be a non empty set arkbe a relational structure yielding nonempty many sorted set
indexed byl. Suppose that for every elementf | holdsJ(i) is an upper-bounded antisym-
metric relational structure. Lébe an element df. ThenT (i) = Ty)-

(34) Letl be anon empty set arddbe a relational structure yielding nonempty reflexive-yielding
many sorted set indexed by Suppose that for every elemeérdf | holdsJ(i) is a continuous
complete lattice. The)J is continuous.

3. KERNEL PROJECTIONS ANDQUOTIENT LATTICES
Next we state the proposition

(35) LetL, T be continuous complete latticeghe a CLHomomorphism df, T, andSbe a sub-
set of L, L]. SupposeS= [g, 9] (idne carrier oft ). TheN sulfS) is a continuous subframe
of [L,L1.

Let L be a relational structure and IBtbe a subset ofL,L]. Let us assume tha is an
equivalence relation of the carrier bf The functor EQR€R) yielding an equivalence relation of
the carrier oiL is defined by:

(Def.1) EqRelR) =R

Let L be a non empty relational structure and Rebe a subset ofL,L]. We say thaR is
continuous lattice congruence if and only if:

(Def. 2) Ris an equivalence relation of the carrierloénd sulfR) is a continuous subframe 6t.,
L.

Next we state the proposition

(36) LetL be a complete lattice ariRlbe a non empty subset pE, L. Suppos&is continuous
lattice congruence. Letbe an element df. Then(inf([Xgqreir)), X) € R
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Let L be a complete lattice and I&be a non empty subset pt., L]. Let us assume th&

is continuous lattice congruence. The kernel operatioR yielding a kernel map fronh into L is
defined by:

(Def. 3) For every elementof L holds (the kernel operation &)(x) = inf([X|gqre(r))-

One can prove the following three propositions:

(37) LetL be a complete lattice ariRlbe a non empty subset pE, L}]. Suppos&is continuous
lattice congruence. Then

(i) the kernel operation dRis directed-sups-preserving, and
(i) R=[the kernel operation d®, the kernel operation (R:]—l(idme carrier ofL )-
(38) LetL be a continuous complete lattidepe a subset dfL, L ], andk be a kernel map from

L into L. Supposk is directed-sups-preserving aRd= [ k, k:]*l(idthe carrier ofL)- Then there
exists a continuous complete strict lattlcesuch that

(i) the carrier ofLy = ClassesEqRéR),

(i) theinternal relation of 4 = {{[X|gqre(r): [Yleqretr)): X raNges over elements bfy ranges
over elements of: k(x) <k(y)}, and

(iii)  for every mapg from L into L4 such that for every elemertof L holdsg(x) = [x]EqRe(R)
holdsg is a CLHomomorphism of, L.
(39) LetL be a continuous complete lattice aRdbe a subset dfL, L. Suppose that
() Risan equivalence relation of the carrierlgfand
(i) there exists a continuous complete latticesuch that the carrier df; = Classes EQRER)

and for every may from L into L4 such that for every elemerif L holdsg(X) = [Xgqrer)
holdsg is a CLHomomorphism of, L.

Then suljR) is a continuous subframe ot L .

Let L be a non empty reflexive relational structure. Note that there exists a ma.fioim L
which is directed-sups-preserving and kernel.

LetL be a non empty reflexive relational structure andlbe a kernel map frorh into L. The
kernel congruence dfyielding a non empty subset pt, L] is defined as follows:

(Def. 4) The kernel congruence bf= [k, k]~ (idie carrier ofL )-

We now state two propositions:

(40) LetL be a non empty reflexive relational structure &nde a kernel map from into L.
Then the kernel congruencelofs an equivalence relation of the carrierlof

(41) LetL be a continuous complete lattice anlde a directed-sups-preserving kernel map from
L into L. Then the kernel congruencelofs continuous lattice congruence.

LetL be a continuous complete lattice andRdte a non empty subset pE, L. Let us assume

thatRis continuous lattice congruence. The funcigg yields a continuous complete strict lattice
and is defined as follows:

(Def. 5) The carrier ot /g = ClassesEqRER) and for all elements, y of /g holdsx < y iff

[ex < [y
We now state four propositions:
(42) LetL be a continuous complete lattice aRdbe a non empty subset pt, L]. SupposeR

is continuous lattice congruence. Lebe a set. Them is an element of / if and only if
there exists an elemenbf L such thak = [y]gre(r)-
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(43) LetL be a continuous complete lattice aRdbe a non empty subset pt, L. SupposeR
is continuous lattice congruence. ThRea= the kernel congruence of the kernel operation of
R.

(44) LetL be a continuous complete lattice anbe a directed-sups-preserving kernel map from
L into L. Thenk = the kernel operation of the kernel congruencé.of

(45) LetL be a continuous complete lattice apthe a projection map fror into L. Supposep
is infs-preserving. Then Ipis a continuous lattice and Ipiis infs-inheriting.
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