Closure Operators and Subalgebras¹

Grzegorz Bancerek Warsaw University Białystok

MML Identifier: WAYBEL10.

WWW: http://mizar.org/JFM/Vol9/waybel10.html

The articles [13], [8], [15], [16], [17], [5], [7], [6], [1], [12], [14], [2], [10], [3], [4], [11], [18], and [9] provide the notation and terminology for this paper.

1. Preliminaries

In this article we present several logical schemes. The scheme SubrelstrEx deals with a non empty relational structure \mathcal{A} , a set \mathcal{B} , and a unary predicate \mathcal{P} , and states that:

There exists a non empty full strict relational substructure S of \mathcal{A} such that for every element x of \mathcal{A} holds x is an element of S if and only if $\mathcal{P}[x]$ provided the following conditions are met:

- $\mathcal{P}[\mathcal{B}]$, and
- $\mathcal{B} \in \text{the carrier of } \mathcal{A}$.

The scheme RelstrEq deals with non empty relational structures \mathcal{A} , \mathcal{B} , a unary predicate \mathcal{P} , and a binary predicate \mathcal{Q} , and states that:

The relational structure of \mathcal{A} = the relational structure of \mathcal{B} provided the following conditions are met:

- For every set x holds x is an element of \mathcal{A} iff $\mathcal{P}[x]$,
- For every set x holds x is an element of \mathcal{B} iff $\mathcal{P}[x]$,
- For all elements a, b of \mathcal{A} holds $a \leq b$ iff Q[a,b], and
- For all elements a, b of \mathcal{B} holds $a \leq b$ iff Q[a,b].

The scheme SubrelstrEq1 deals with a non empty relational structure \mathcal{A} , non empty full relational substructures \mathcal{B} , \mathcal{C} of \mathcal{A} , and a unary predicate \mathcal{P} , and states that:

The relational structure of \mathcal{B} = the relational structure of \mathcal{C} provided the following conditions are met:

- For every set x holds x is an element of \mathcal{B} iff $\mathcal{P}[x]$, and
- For every set x holds x is an element of C iff $\mathcal{P}[x]$.

The scheme SubrelstrEq2 deals with a non empty relational structure \mathcal{A} , non empty full relational substructures \mathcal{B} , \mathcal{C} of \mathcal{A} , and a unary predicate \mathcal{P} , and states that:

The relational structure of \mathcal{B} = the relational structure of \mathcal{C} provided the parameters have the following properties:

- For every element x of \mathcal{A} holds x is an element of \mathcal{B} iff $\mathcal{P}[x]$, and
- For every element x of \mathcal{A} holds x is an element of \mathcal{C} iff $\mathcal{P}[x]$.

Next we state three propositions:

¹This work has been partially supported by the Office of Naval Research Grant N00014-95-1-1336.

- (1) For all binary relations R, Q holds $R \subseteq Q$ iff $R^{\smile} \subseteq Q^{\smile}$ and $R^{\smile} \subseteq Q$ iff $R \subseteq Q^{\smile}$.
- $(3)^{1}$ Let L, S be relational structures. Then
- (i) S is a relational substructure of L iff S^{op} is a relational substructure of L^{op} , and
- (ii) S^{op} is a relational substructure of L iff S is a relational substructure of L^{op} .
- (4) Let L, S be relational structures. Then
- (i) S is a full relational substructure of L iff S^{op} is a full relational substructure of L^{op} , and
- (ii) S^{op} is a full relational substructure of L iff S is a full relational substructure of L^{op} .

Let L be a relational structure and let S be a full relational substructure of L. Then S^{op} is a strict full relational substructure of L^{op} .

Let X be a set and let L be a non empty relational structure. Observe that $X \longmapsto L$ is nonempty. Let S be a relational structure and let T be a non empty reflexive relational structure. One can verify that there exists a map from S into T which is monotone.

Let L be a non empty relational structure. Note that every map from L into L which is projection is also monotone and idempotent.

Let S, T be non empty reflexive relational structures and let f be a monotone map from S into T. Note that f° is monotone.

Let L be a 1-sorted structure. Observe that id_L is one-to-one.

Let L be a non empty reflexive relational structure. Observe that id_L is sups-preserving and infs-preserving.

We now state the proposition

(5) Let *L* be a relational structure and *S* be a subset of *L*. Then id_S is a map from sub(S) into *L* and for every map *f* from sub(S) into *L* such that $f = id_S$ holds *f* is monotone.

Let L be a non empty reflexive relational structure. One can verify that there exists a map from L into L which is sups-preserving, infs-preserving, closure, kernel, and one-to-one.

One can prove the following proposition

(6) Let *L* be a non empty reflexive relational structure, *c* be a closure map from *L* into *L*, and *x* be an element of *L*. Then $c(x) \ge x$.

Let S, T be 1-sorted structures, let f be a function from the carrier of S into the carrier of T, and let T be a 1-sorted structure. Let us assume that the carrier of T the carrier of T. The functor T is defined by:

(Def. 1) $f \upharpoonright R = f \upharpoonright$ the carrier of R.

The following two propositions are true:

- (7) Let S, T be relational structures, R be a relational substructure of S, and f be a function from the carrier of S into the carrier of T. Then $f \mid R = f \mid$ the carrier of R and for every set X such that $X \in C$ the carrier of R holds $(f \mid R)(x) = f(x)$.
- (8) Let S, T be relational structures and f be a map from S into T. Suppose f is one-to-one. Let R be a relational substructure of S. Then $f \upharpoonright R$ is one-to-one.
- Let S, T be non empty reflexive relational structures, let f be a monotone map from S into T, and let R be a relational substructure of S. One can verify that $f \upharpoonright R$ is monotone.

Next we state the proposition

(9) Let S, T be non empty relational structures, R be a non empty relational substructure of S, f be a map from S into T, and g be a map from T into S. Suppose f is one-to-one and $g = f^{-1}$. Then $g \upharpoonright \operatorname{Im}(f \upharpoonright R)$ is a map from $\operatorname{Im}(f \upharpoonright R)$ into R and $g \upharpoonright \operatorname{Im}(f \upharpoonright R) = (f \upharpoonright R)^{-1}$.

¹ The proposition (2) has been removed.

2. The lattice of closure operators

Let S be a relational structure and let T be a non empty reflexive relational structure. Observe that MonMaps(S,T) is non empty.

One can prove the following proposition

(10) Let S be a relational structure, T be a non empty reflexive relational structure, and x be a set. Then x is an element of MonMaps(S,T) if and only if x is a monotone map from S into T.

Let L be a non empty reflexive relational structure. The functor ClOpers(L) yields a non empty full strict relational substructure of MonMaps(L,L) and is defined by:

(Def. 2) For every map f from L into L holds f is an element of ClOpers(L) iff f is closure.

The following propositions are true:

- (11) Let L be a non empty reflexive relational structure and x be a set. Then x is an element of ClOpers(L) if and only if x is a closure map from L into L.
- (12) Let X be a set, L be a non empty relational structure, f, g be functions from X into the carrier of L, and x, y be elements of L^X . If x = f and y = g, then $x \le y$ iff $f \le g$.
- (13) Let *L* be a complete lattice, c_1 , c_2 be maps from *L* into *L*, and *x*, *y* be elements of ClOpers(*L*). If $x = c_1$ and $y = c_2$, then $x \le y$ iff $c_1 \le c_2$.
- (14) Let L be a reflexive relational structure and S_1 , S_2 be full relational substructures of L. Suppose the carrier of $S_1 \subseteq$ the carrier of S_2 . Then S_1 is a relational substructure of S_2 .
- (15) Let L be a complete lattice and c_1 , c_2 be closure maps from L into L. Then $c_1 \le c_2$ if and only if $\operatorname{Im} c_2$ is a relational substructure of $\operatorname{Im} c_1$.

3. The lattice of closure systems

Let L be a relational structure. The functor Sub(L) yields a strict non empty relational structure and is defined by the conditions (Def. 3).

- (Def. 3)(i) For every set x holds x is an element of Sub(L) iff x is a strict relational substructure of L, and
 - (ii) for all elements a, b of $\operatorname{Sub}(L)$ holds $a \le b$ iff there exists a relational structure R such that b = R and a is a relational substructure of R.

Next we state the proposition

(16) Let L, R be relational structures and x, y be elements of Sub(L). Suppose y = R. Then $x \le y$ if and only if x is a relational substructure of R.

Let L be a relational structure. Note that Sub(L) is reflexive, antisymmetric, and transitive.

Let L be a relational structure. One can verify that $\mathrm{Sub}(L)$ is complete.

Let L be a complete lattice. One can verify that every relational substructure of L which is infsinheriting is also non empty and every relational substructure of L which is sups-inheriting is also non empty.

Let L be a relational structure. A system of L is a full relational substructure of L.

Let L be a non empty relational structure and let S be a system of L. We introduce S is closure as a synonym of S is infs-inheriting.

Let L be a non empty relational structure. Observe that $sub(\Omega_L)$ is infs-inheriting and sups-inheriting.

Let L be a non empty relational structure. The functor ClosureSystems(L) yields a full strict non empty relational substructure of $\operatorname{Sub}(L)$ and is defined by the condition (Def. 4).

(Def. 4) Let R be a strict relational substructure of L. Then R is an element of ClosureSystems(L) if and only if R is infs-inheriting and full.

One can prove the following two propositions:

- (17) Let L be a non empty relational structure and x be a set. Then x is an element of ClosureSystems(L) if and only if x is a strict closure system of L.
- (18) Let L be a non empty relational structure, R be a relational structure, and x, y be elements of ClosureSystems(L). Suppose y = R. Then $x \le y$ if and only if x is a relational substructure of R.
 - 4. ISOMORPHISM BETWEEN CLOSURE OPERATORS AND CLOSURE SYSTEMS

Let L be a non empty poset and let h be a closure map from L into L. One can verify that Im h is infs-inheriting.

Let L be a non empty poset. The functor $\operatorname{ClImageMap}(L)$ yielding a map from $\operatorname{ClOpers}(L)$ into $(\operatorname{ClosureSystems}(L))^{\operatorname{op}}$ is defined as follows:

(Def. 5) For every closure map c from L into L holds (CIImageMap(L)) $(c) = \operatorname{Im} c$.

Let L be a non empty relational structure and let S be a relational substructure of L. The closure operation of S is a map from L into L and is defined by:

(Def. 6) For every element x of L holds (the closure operation of S)(x) = $\prod_L (\uparrow x \cap \text{the carrier of } S)$.

Let L be a complete lattice and let S be a closure system of L. Note that the closure operation of S is closure.

Next we state two propositions:

- (19) Let L be a complete lattice and S be a closure system of L. Then Im (the closure operation of S) = the relational structure of S.
- (20) For every complete lattice L and for every closure map c from L into L holds the closure operation of $\operatorname{Im} c = c$.

Let L be a complete lattice. Note that $\operatorname{ClImageMap}(L)$ is one-to-one. Next we state two propositions:

- (21) For every complete lattice L holds $(ClImageMap(L))^{-1}$ is a map from $(ClosureSystems(L))^{op}$ into ClOpers(L).
- (22) Let L be a complete lattice and S be a strict closure system of L. Then $(ClImageMap(L))^{-1}(S) =$ the closure operation of S.

Let L be a complete lattice. Note that ClImageMap(L) is isomorphic. One can prove the following proposition

- (23) For every complete lattice L holds ClOpers(L) and $(ClosureSystems(L))^{op}$ are isomorphic.
 - 5. ISOMORPHISM BETWEEN CLOSURE OPERATORS PRESERVING DIRECTED SUPS AND SUBALGEBRAS

One can prove the following three propositions:

- (24) Let *L* be a relational structure, *S* be a full relational substructure of *L*, and *X* be a subset of *S*. Then
 - (i) if X is a directed subset of L, then X is directed, and
- (ii) if X is a filtered subset of L, then X is filtered.

- (25) Let *L* be a complete lattice and *S* be a closure system of *L*. Then the closure operation of *S* is directed-sups-preserving if and only if *S* is directed-sups-inheriting.
- (26) Let L be a complete lattice and h be a closure map from L into L. Then h is directed-supspreserving if and only if Im h is directed-sups-inheriting.

Let *L* be a complete lattice and let *S* be a directed-sups-inheriting closure system of *L*. Note that the closure operation of *S* is directed-sups-preserving.

Let L be a complete lattice and let h be a directed-sups-preserving closure map from L into L. Observe that Im h is directed-sups-inheriting.

Let L be a non empty reflexive relational structure. The functor ClOpers*(L) yields a non empty full strict relational substructure of ClOpers(L) and is defined by the condition (Def. 7).

(Def. 7) Let f be a closure map from L into L. Then f is an element of ClOpers^{*}(L) if and only if f is directed-sups-preserving.

We now state the proposition

(27) Let L be a non empty reflexive relational structure and x be a set. Then x is an element of ClOpers*(L) if and only if x is a directed-sups-preserving closure map from L into L.

Let L be a non empty relational structure. The functor Subalgebras (L) yields a full strict non empty relational substructure of ClosureSystems (L) and is defined by the condition (Def. 8).

(Def. 8) Let R be a strict closure system of L. Then R is an element of Subalgebras(L) if and only if R is directed-sups-inheriting.

The following two propositions are true:

- (28) Let L be a non empty relational structure and x be a set. Then x is an element of Subalgebras (L) if and only if x is a strict directed-sups-inheriting closure system of L.
- (29) For every complete lattice L holds $\operatorname{Im}(\operatorname{ClImageMap}(L) \upharpoonright \operatorname{ClOpers}^*(L)) = (\operatorname{Subalgebras}(L))^{\operatorname{op}}$.

Let L be a complete lattice. Note that $(ClImageMap(L) \upharpoonright ClOpers^*(L))^{\circ}$ is isomorphic. The following proposition is true

(30) For every complete lattice L holds $ClOpers^*(L)$ and $(Subalgebras(L))^{op}$ are isomorphic.

REFERENCES

- [1] Grzegorz Bancerek. König's theorem. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/card_3.html.
- [2] Grzegorz Bancerek. Complete lattices. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/lattice3.html.
- [3] Grzegorz Bancerek. Bounds in posets and relational substructures. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/ JFM/Vol8/yellow_0.html.
- [4] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/ JFM/Vol8/waybel_0.html.
- [5] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [6] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [7] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/partfunl.html.
- [8] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.
- [9] Czesław Byliński. Galois connections. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/waybel_1.html.
- [10] Adam Grabowski. On the category of posets. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/orders_ 3.html.
- [11] Adam Grabowski and Robert Milewski. Boolean posets, posets under inclusion and products of relational structures. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/yellow_1.html.

- [12] Beata Madras. Product of family of universal algebras. *Journal of Formalized Mathematics*, 5, 1993. http://mizar.org/JFM/Vo15/pralg_1.html.
- [13] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [14] Wojciech A. Trybulec. Partially ordered sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/orders_ 1.html.
- [15] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [16] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relat 1.html.
- [17] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relset_1.html.
- [18] Mariusz Żynel and Czesław Byliński. Properties of relational structures, posets, lattices and maps. *Journal of Formalized Mathematics*, 8, 1996. http://mizar.org/JFM/Vol8/yellow_2.html.

Received January 15, 1997

Published January 2, 2004