JOURNAL OF FORMALIZED MATHEMATICS
Volume9,  Released 1997,  Published 2003
Inst. of Computer Science, Univ. of Bialystok

Closure Operators and Subalgebrd$

Grzegorz Bancerek
Warsaw University
Biatystok

MML Identifier: WAYBEL10.

WWW: http://mizar.org/JFM/Vol9/waybell0.html

The articles[[13],[8],[[15],[[16], [17],.06],[071.[06],0L], [12],[114],[12],[[10],[1B],14],[[11],[18], and
[9] provide the notation and terminology for this paper.

1. PRELIMINARIES

In this article we present several logical schemes. The sclsermeelstrExdeals with a non empty
relational structured, a setB, and a unary predicatg, and states that:
There exists a non empty full strict relational substructioé 2 such that for every
elementx of 4 holdsx is an element o8if and only if P[X]
provided the following conditions are met:
e P[B], and
e B e the carrier of4.
The schem®elstrEqdeals with non empty relational structurds3, a unary predicat®, and
a binary predicat® , and states that:
The relational structure off = the relational structure aB
provided the following conditions are met:
e For every sek holdsx is an element ofd iff P[],
e For every sex holdsx is an element ofs iff P[x],
e For all elements, b of 2 holdsa < biff Q[a,b], and
e For all elements, b of B holdsa < biff QJ[a,b].
The schemé&ubrelstrEqldeals with a non empty relational structufie non empty full rela-
tional substructures, C of 4, and a unary predicatg, and states that:
The relational structure aB = the relational structure af
provided the following conditions are met:
e For every sex holdsx is an element ofs iff P[x], and
e For every sek holdsx is an element of” iff P[x].
The schemé&ubrelstrEqZleals with a non empty relational structufie non empty full rela-
tional substructures, C of 4, and a unary predicatg, and states that:
The relational structure aB = the relational structure af
provided the parameters have the following properties:
e For every element of 4 holdsx is an element o3 iff ?[x], and
e For every element of 4 holdsx is an element of iff P[x].
Next we state three propositions:

1This work has been partially supported by the Office of Naval Research Grant NO0014-95-1-1336.
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(1) For all binary relation®, Q holdsRC Qiff R~ C Q- andR~ C Qiff RC Q.

(3] LetL, Sbe relational structures. Then
(i) Sis arelational substructure bfiff P is a relational substructure &f°, and
(i) SPis arelational substructure bfiff Sis a relational substructure &f®.

(4) LetL, Sbe relational structures. Then
(i) Sis afull relational substructure afiff P is a full relational substructure &P, and
(i) SPis afull relational substructure afiff Sis a full relational substructure afP.

LetL be a relational structure and Bbe a full relational substructure bf ThenS is a strict
full relational substructure df°P.

Let X be a set and ldt be a non empty relational structure. Observe ¥at— L is nonempty.

Let Sbe a relational structure and [€tbe a non empty reflexive relational structure. One can
verify that there exists a map froBinto T which is monotone.

LetL be a non empty relational structure. Note that every map frémto L which is projection
is also monotone and idempotent.

Let S T be non empty reflexive relational structures andfléie a monotone map frointo
T. Note thatf° is monotone.

LetL be a 1-sorted structure. Observe thatiglone-to-one.

Let L be a non empty reflexive relational structure. Observe thaisicdups-preserving and
infs-preserving.

We now state the proposition

(5) LetL be arelational structure ar8be a subset df. Then ic is a map from sut) into L
and for every mag from sul{S) into L such thatf = ids holds f is monotone.

LetL be a non empty reflexive relational structure. One can verify that there exists a map from
L into L which is sups-preserving, infs-preserving, closure, kernel, and one-to-one.
One can prove the following proposition

(6) LetL be a non empty reflexive relational structurdse a closure map frominto L, andx
be an element df. Thenc(x) > x.

LetS T be 1-sorted structures, létbe a function from the carrier &into the carrier off, and
let Rbe a 1-sorted structure. Let us assume that the carrieicothe carrier ofS. The functorf [R
yielding a map fronRinto T is defined by:

(Def. 1) f[R= f[the carrier oR.

The following two propositions are true:

(7) LetS T be relational structure® be a relational substructure 8f and f be a function
from the carrier ofSinto the carrier ofT. Thenf[R= f[the carrier ofR and for every sex
such thak € the carrier oR holds(f[R)(x) = f(X).

(8) LetS T be relational structures anfdbe a map fronSinto T. Supposef is one-to-one.
Let Rbe a relational substructure 8f Thenf [Ris one-to-one.

Let S T be non empty reflexive relational structures, idte a monotone map fro&@into T,
and |etR be a relational substructure §f One can verify thaf [R is monotone.
Next we state the proposition

(9) LetS T be non empty relational structure®,be a non empty relational substructure of
S f be a map fronSinto T, andg be a map fronil into S. Supposef is one-to-one and
g= f~1. ThenglIm(f[R)is a map from Inif [R) into Randg[Im(f[R) = (f[R)~™.

1 The proposition (2) has been removed.
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2. THE LATTICE OF CLOSURE OPERATORS

Let Sbe a relational structure and [Etbe a non empty reflexive relational structure. Observe that
MonMapgS T) is non empty.
One can prove the following proposition

(10) LetShbe a relational structurd, be a non empty reflexive relational structure, artze a
set. Therx is an element of MonMag§, T) if and only if x is a monotone map fror8into
T.

Let L be a non empty reflexive relational structure. The functor CIQp¢ngelds a non empty
full strict relational substructure of MonMafis L) and is defined by:

(Def. 2) For every mag from L into L holdsf is an element of ClOpetk) iff f is closure.

The following propositions are true:

(11) LetL be a non empty reflexive relational structure artuk a set. Ther is an element of
ClOpergL) if and only if x is a closure map frorh into L.

(12) LetX be a setL be a non empty relational structurg, g be functions fromX into the
carrier ofL, andx, y be elements ofX. If x= f andy = g, thenx < yiff f <g.

(13) LetL be a complete latticeg;, ¢, be maps fromL into L, and X, y be elements of
ClOpergL). If x=c; andy = ¢y, thenx <y iff ¢; < cp.

(14) LetL be a reflexive relational structure a®g, S; be full relational substructures &f
Suppose the carrier & C the carrier ofS,. ThenS, is a relational substructure &5.

(15) LetL be a complete lattice ara, ¢, be closure maps from into L. Thenc; < ¢; if and
only if Im ¢, is a relational substructure of lcq.

3. THE LATTICE OF CLOSURE SYSTEMS

Let L be arelational structure. The functor $ubyields a strict non empty relational structure and
is defined by the conditions (Def. 3).

(Def. 3)(i) For every sex holdsx is an element of Sul) iff x is a strict relational substructure of
L, and

(i) for all elementsa, b of Sul(L) holdsa < b iff there exists a relational structuResuch that
b= Randais a relational substructure &

Next we state the proposition

(16) LetL, Rbe relational structures amgy be elements of Syh). Suppose/ =R. Thenx <y
if and only if x is a relational substructure &

LetL be a relational structure. Note that $ubis reflexive, antisymmetric, and transitive.

LetL be a relational structure. One can verify that 8)kis complete.

LetL be a complete lattice. One can verify that every relational substructirevbich is infs-
inheriting is also non empty and every relational substructutewhich is sups-inheriting is also
non empty.

LetL be a relational structure. A systemlofs a full relational substructure &f

Let L be a non empty relational structure and3die a system of. We introduceSis closure
as a synonym o8is infs-inheriting.

Let L be a non empty relational structure. Observe thatQubis infs-inheriting and sups-
inheriting.

LetL be a non empty relational structure. The functor ClosureSystemglds a full strict non
empty relational substructure of Sy and is defined by the condition (Def. 4).
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(Def. 4) LetR be a strict relational substructure lof ThenR is an element of ClosureSystefth$
if and only if Ris infs-inheriting and full.

One can prove the following two propositions:

(17) LetL be a non empty relational structure arcbe a set. Therx is an element of
ClosureSystents ) if and only if x is a strict closure system af

(18) LetL be a non empty relational structufRpe a relational structure, amxgly be elements

of ClosureSystentt). Supposg = R. Thenx <y if and only if x is a relational substructure
of R.

4. ISOMORPHISM BETWEEN CLOSURE OPERATORS AND CLOSURE SYSTEMS

Let L be a non empty poset and lebe a closure map frorh into L. One can verify that Irh is
infs-inheriting.

LetL be a non empty poset. The functor ClimageMajyielding a map from ClOpef(t) into
(ClosureSystent&))°P is defined as follows:

(Def. 5) For every closure mapfrom L into L holds(ClimageMagL))(c) = Imc.

LetL be a non empty relational structure and3éte a relational substructure bf The closure
operation ofSis a map fronL into L and is defined by:

(Def. 6) For every elementof L holds (the closure operation 8f(x) = [ |L(1xNthe carrier ofS).

LetL be a complete lattice and I8te a closure system af Note that the closure operation of
Sis closure.

Next we state two propositions:

(19) LetL be a complete lattice arfilbe a closure system &f Then Im(the closure operation
of S) = the relational structure @&.

(20) For every complete lattide and for every closure mapfrom L into L holds the closure
operation of Int =c.

LetL be a complete lattice. Note that ClimageMepis one-to-one.
Next we state two propositions:

(21) For every complete lattiteholds(ClimageMagL)) ! is a map from(ClosureSystents ) )°P
into ClOperglL).

(22) Let L be a complete lattice and® be a strict closure system of. Then
(ClimageMapgL))~%(S) = the closure operation &

Let L be a complete lattice. Note that ClimageMlpis isomorphic.
One can prove the following proposition

(23) For every complete lattideholds ClOperf.) and(ClosureSystentt))°P are isomorphic.

5. ISOMORPHISM BETWEEN CLOSURE OPERATORS PRESERVING DIRECTED SUPS AND
SUBALGEBRAS

One can prove the following three propositions:

(24) LetL be a relational structur&be a full relational substructure bf andX be a subset of
S Then

() if Xis adirected subset df thenX is directed, and
(i) if Xis afiltered subset df, thenX is filtered.
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(25) LetL be a complete lattice arfalbe a closure system &f Then the closure operation &f
is directed-sups-preserving if and onhSfs directed-sups-inheriting.

(26) LetL be a complete lattice arttbe a closure map frorh into L. Thenh is directed-sups-
preserving if and only if Inl is directed-sups-inheriting.

LetL be a complete lattice and I8tbe a directed-sups-inheriting closure systerh.dilote that
the closure operation @&is directed-sups-preserving.

Let L be a complete lattice and latbe a directed-sups-preserving closure map ftoimto L.
Observe that Irh is directed-sups-inheriting.

LetL be a non empty reflexive relational structure. The functor CIOpkfyields a non empty
full strict relational substructure of CIOpéls and is defined by the condition (Def. 7).

(Def. 7) Letf be a closure map frorb into L. Thenf is an element of CIOpefilL) if and only if
f is directed-sups-preserving.

We now state the proposition

(27) LetL be a non empty reflexive relational structure artik a set. Ther is an element of
ClOpers(L) if and only if x is a directed-sups-preserving closure map fitomto L.

Let L be a non empty relational structure. The functor Subalgébyaselds a full strict non
empty relational substructure of ClosureSystdmsnd is defined by the condition (Def. 8).

(Def. 8) LetRbe a strict closure system bf ThenR is an element of Subalgebfas if and only
if Ris directed-sups-inheriting.

The following two propositions are true:

(28) LetL be a non empty relational structure arcbe a set. Therx is an element of
Subalgebrad.) if and only if x is a strict directed-sups-inheriting closure systerh.of

(29) For every complete lattideholds Im(ClimageMaygL )| ClOpers (L)) = (Subalgebrad.))°P.

Let L be a complete lattice. Note thg@limageMaygL) | ClOpers(L))° is isomorphic.
The following proposition is true

(30) For every complete lattideholds ClOper§(L) and(Subalgebrad. ))°P are isomorphic.
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