Remarks on Special Subsets of Topological Spaces

Zbigniew Karno Warsaw University Białystok

Summary. Let X be a topological space and let A be a subset of X. Recall that A is nowhere dense in X if its closure is a boundary subset of X, i.e., if $Int\overline{A} = \emptyset$ (see [2]). We introduce here the concept of everywhere dense subsets in X, which is dual to the above one. Namely, A is said to be everywhere dense in X if its interior is a dense subset of X, i.e., if \overline{IntA} = the carrier of X.

Our purpose is to list a number of properties of such sets (comp. [7]). As a sample we formulate their two dual characterizations. The first one characterizes thin sets in X:A is nowhere dense iff for every open nonempty subset G of X there is an open nonempty subset of X contained in G and disjoint from A. The corresponding second one characterizes thick sets in X:A is everywhere dense iff for every closed subset F of X distinct from the carrier of X there is a closed subset of X distinct from the carrier of X, which contains F and together with A covers the carrier of X. We also give some connections between both these concepts. Of course, A is everywhere (nowhere) dense in X iff its complement is nowhere (everywhere) dense. Moreover, A is nowhere dense iff there are two subsets of X, C boundary closed and B everywhere dense, such that $A = C \cap B$ and $C \cup B$ covers the carrier of X. Dually, A is everywhere dense iff there are two disjoint subsets of X, C open dense and B nowhere dense, such that $A = C \cup B$.

Note that some relationships between everywhere (nowhere) dense sets in X and everywhere (nowhere) dense sets in subspaces of X are also indicated.

MML Identifier: TOPS_3.

WWW: http://mizar.org/JFM/Vol5/tops_3.html

The articles [4], [6], [3], [7], [5], and [1] provide the notation and terminology for this paper.

1. SELECTED PROPERTIES OF SUBSETS OF A TOPOLOGICAL SPACE

In this paper *X* denotes a topological structure and *A* denotes a subset of *X*. We now state three propositions:

- we now state tiffee propositions.
- (1) $A = \emptyset_X$ iff $A^c = \Omega_X$ and $A = \emptyset$ iff $A^c =$ the carrier of X.
- (2) $A = \Omega_X$ iff $A^c = \emptyset_X$ and A = the carrier of X iff $A^c = \emptyset$.
- (3) For every topological space *X* and for all subsets *A*, *B* of *X* holds $Int A \cap \overline{B} \subseteq \overline{A \cap B}$.

In the sequel *X* denotes a topological space and *A*, *B* denote subsets of *X*. We now state several propositions:

- $(4) \quad \operatorname{Int}(A \cup B) \subseteq \overline{A} \cup \operatorname{Int} B.$
- (5) For every subset *A* of *X* such that *A* is closed holds $Int(A \cup B) \subseteq A \cup Int B$.

- (6) For every subset *A* of *X* such that *A* is closed holds $Int(A \cup B) = Int(A \cup Int B)$.
- (7) If A misses $Int\overline{A}$, then $Int\overline{A} = \emptyset$.
- (8) If $A \cup \overline{\text{Int} A} = \text{the carrier of } X$, then $\overline{\text{Int} A} = \text{the carrier of } X$.

2. SPECIAL SUBSETS OF A TOPOLOGICAL SPACE

Let *X* be a topological structure and let *A* be a subset of *X*. Let us observe that *A* is boundary if and only if:

(Def. 1) Int $A = \emptyset$.

We now state the proposition

(9) \emptyset_X is boundary.

In the sequel *X* is a non empty topological space and *A* is a subset of *X*. Next we state the proposition

(10) If A is boundary, then $A \neq$ the carrier of X.

In the sequel *X* is a topological space and *A*, *B* are subsets of *X*. We now state several propositions:

- (11) If *B* is boundary and $A \subseteq B$, then *A* is boundary.
- (12) A is boundary iff for every subset C of X such that $A^c \subseteq C$ and C is closed holds C = the carrier of X.
- (13) A is boundary iff for every subset G of X such that $G \neq \emptyset$ and G is open holds A^c meets G.
- (14) *A* is boundary iff for every subset *F* of *X* such that *F* is closed holds $\operatorname{Int} F = \operatorname{Int}(F \cup A)$.
- (15) If *A* is boundary or *B* is boundary, then $A \cap B$ is boundary.

Let *X* be a topological structure and let *A* be a subset of *X*. Let us observe that *A* is dense if and only if:

(Def. 2) \overline{A} = the carrier of X.

Next we state the proposition

(16) Ω_X is dense.

In the sequel X denotes a non empty topological space and A, B denote subsets of X. The following propositions are true:

- (17) If *A* is dense, then $A \neq \emptyset$.
- (18) A is dense iff A^c is boundary.
- (19) *A* is dense iff for every subset *C* of *X* such that $A \subseteq C$ and *C* is closed holds C = the carrier of *X*.
- (20) *A* is dense iff for every subset *G* of *X* such that *G* is open holds $\overline{G} = \overline{G \cap A}$.
- (21) If A is dense or B is dense, then $A \cup B$ is dense.

Let *X* be a topological structure and let *A* be a subset of *X*. Let us observe that *A* is nowhere dense if and only if:

(Def. 3) Int
$$\overline{A} = \emptyset$$
.

The following propositions are true:

- (22) \emptyset_X is nowhere dense.
- (23) If A is nowhere dense, then $A \neq$ the carrier of X.
- (24) If A is nowhere dense, then \overline{A} is nowhere dense.
- (25) If A is nowhere dense, then A is not dense.
- (26) If *B* is nowhere dense and $A \subseteq B$, then *A* is nowhere dense.
- (27) A is nowhere dense iff there exists a subset C of X such that $A \subseteq C$ and C is closed and boundary.
- (28) A is nowhere dense if and only if for every subset G of X such that $G \neq \emptyset$ and G is open there exists a subset H of X such that $H \subseteq G$ and $H \neq \emptyset$ and H is open and A misses H.
- (29) If *A* is nowhere dense or *B* is nowhere dense, then $A \cap B$ is nowhere dense.
- (30) If *A* is nowhere dense and *B* is boundary, then $A \cup B$ is boundary.

Let *X* be a topological structure and let *A* be a subset of *X*. We say that *A* is everywhere dense if and only if:

(Def. 4) $\overline{\text{Int}A} = \Omega_X$.

Let *X* be a topological structure and let *A* be a subset of *X*. Let us observe that *A* is everywhere dense if and only if:

(Def. 5) $\overline{\text{Int}A}$ = the carrier of X.

We now state a number of propositions:

- (31) Ω_X is everywhere dense.
- (32) If A is everywhere dense, then IntA is everywhere dense.
- (33) If *A* is everywhere dense, then *A* is dense.
- (34) If *A* is everywhere dense, then $A \neq \emptyset$.
- (35) A is everywhere dense iff IntA is dense.
- (36) If A is open and dense, then A is everywhere dense.
- (37) If A is everywhere dense, then A is not boundary.
- (38) If *A* is everywhere dense and $A \subseteq B$, then *B* is everywhere dense.
- (39) A is everywhere dense iff A^{c} is nowhere dense.
- (40) A is nowhere dense iff A^{c} is everywhere dense.
- (41) A is everywhere dense iff there exists a subset C of X such that $C \subseteq A$ and C is open and dense.
- (42) A is everywhere dense if and only if for every subset F of X such that $F \neq$ the carrier of X and F is closed there exists a subset H of X such that $F \subseteq H$ and $H \neq$ the carrier of X and H is closed and $A \cup H =$ the carrier of X.
- (43) If *A* is everywhere dense or *B* is everywhere dense, then $A \cup B$ is everywhere dense.
- (44) If A is everywhere dense and B is everywhere dense, then $A \cap B$ is everywhere dense.
- (45) If *A* is everywhere dense and *B* is dense, then $A \cap B$ is dense.

- (46) If *A* is dense and *B* is nowhere dense, then $A \setminus B$ is dense.
- (47) If *A* is everywhere dense and *B* is boundary, then $A \setminus B$ is dense.
- (48) If A is everywhere dense and B is nowhere dense, then $A \setminus B$ is everywhere dense.

In the sequel D is a subset of X.

The following four propositions are true:

- (49) Suppose *D* is everywhere dense. Then there exist subsets *C*, *B* of *X* such that *C* is open and dense and *B* is nowhere dense and $C \cup B = D$ and *C* misses *B*.
- (50) Suppose D is everywhere dense. Then there exist subsets C, B of X such that C is open and dense and B is closed and boundary and $C \cup D \cap B = D$ and C misses B and $C \cup B =$ the carrier of X.
- (51) Suppose *D* is nowhere dense. Then there exist subsets *C*, *B* of *X* such that *C* is closed and boundary and *B* is everywhere dense and $C \cap B = D$ and $C \cup B =$ the carrier of *X*.
- (52) Suppose D is nowhere dense. Then there exist subsets C, B of X such that C is closed and boundary and B is open and dense and $C \cap (D \cup B) = D$ and C misses B and $C \cup B =$ the carrier of X.

3. Properties of Subsets in Subspaces

In the sequel Y_0 is a subspace of X.

The following propositions are true:

- (53) For every subset *A* of *X* and for every subset *B* of Y_0 such that $B \subseteq A$ holds $\overline{B} \subseteq \overline{A}$.
- (54) Let C, A be subsets of X and B be a subset of Y_0 . If C is closed and $C \subseteq$ the carrier of Y_0 and $A \subseteq C$ and A = B, then $\overline{A} = \overline{B}$.
- (55) Let Y_0 be a closed non empty subspace of X, A be a subset of X, and B be a subset of Y_0 . If A = B, then $\overline{A} = \overline{B}$.
- (56) For every subset *A* of *X* and for every subset *B* of Y_0 such that $A \subseteq B$ holds $Int A \subseteq Int B$.
- (57) Let Y_0 be a non empty subspace of X, C, A be subsets of X, and B be a subset of Y_0 . If C is open and $C \subseteq$ the carrier of Y_0 and $A \subseteq C$ and A = B, then IntA = IntB.
- (58) Let Y_0 be an open non empty subspace of X, A be a subset of X, and B be a subset of Y_0 . If A = B, then IntA = Int B.

In the sequel X_0 is a subspace of X.

Next we state two propositions:

- (59) For every subset *A* of *X* and for every subset *B* of X_0 such that $A \subseteq B$ holds if *A* is dense, then *B* is dense.
- (60) Let C, A be subsets of X and B be a subset of X_0 . Suppose $C \subseteq$ the carrier of X_0 and $A \subseteq C$ and A = B. Then C is dense and B is dense if and only if A is dense.

In the sequel X_0 denotes a non empty subspace of X.

Next we state a number of propositions:

- (61) Let A be a subset of X and B be a subset of X_0 . If $A \subseteq B$, then if A is everywhere dense, then B is everywhere dense.
- (62) Let C, A be subsets of X and B be a subset of X_0 . Suppose C is open and $C \subseteq$ the carrier of X_0 and $A \subseteq C$ and A = B. Then C is dense and B is everywhere dense if and only if A is everywhere dense.

- (63) Let X_0 be an open non empty subspace of X, A, C be subsets of X, and B be a subset of X_0 . Suppose C = the carrier of X_0 and A = B. Then C is dense and B is everywhere dense if and only if A is everywhere dense.
- (64) Let C, A be subsets of X and B be a subset of X_0 . Suppose $C \subseteq$ the carrier of X_0 and $A \subseteq C$ and A = B. Then C is everywhere dense and B is everywhere dense if and only if A is everywhere dense.
- (65) For every subset *A* of *X* and for every subset *B* of X_0 such that $A \subseteq B$ holds if *B* is boundary, then *A* is boundary.
- (66) Let C, A be subsets of X and B be a subset of X_0 . Suppose C is open and $C \subseteq$ the carrier of X_0 and $A \subseteq C$ and A = B. If A is boundary, then B is boundary.
- (67) Let X_0 be an open non empty subspace of X, A be a subset of X, and B be a subset of X_0 . If A = B, then A is boundary iff B is boundary.
- (68) Let *A* be a subset of *X* and *B* be a subset of X_0 . If $A \subseteq B$, then if *B* is nowhere dense, then *A* is nowhere dense.
- (69) Let C, A be subsets of X and B be a subset of X_0 . Suppose C is open and $C \subseteq$ the carrier of X_0 and $A \subseteq C$ and A = B. If A is nowhere dense, then B is nowhere dense.
- (70) Let X_0 be an open non empty subspace of X, A be a subset of X, and B be a subset of X_0 . If A = B, then A is nowhere dense iff B is nowhere dense.
 - 4. Subsets in Topological Spaces with the same Topological Structures

We now state the proposition

(71) Let X_1 , X_2 be 1-sorted structures. Suppose the carrier of X_1 = the carrier of X_2 . Let C_1 be a subset of X_1 and C_2 be a subset of X_2 . Then $C_1 = C_2$ if and only if $C_1^c = C_2^c$.

In the sequel X_1 , X_2 are topological structures.

Next we state two propositions:

- (72) Suppose that
 - (i) the carrier of X_1 = the carrier of X_2 , and
- (ii) for every subset C_1 of X_1 and for every subset C_2 of X_2 such that $C_1 = C_2$ holds C_1 is open iff C_2 is open.

Then the topological structure of X_1 = the topological structure of X_2 .

- (73) Suppose that
 - (i) the carrier of X_1 = the carrier of X_2 , and
- (ii) for every subset C_1 of X_1 and for every subset C_2 of X_2 such that $C_1 = C_2$ holds C_1 is closed iff C_2 is closed.

Then the topological structure of X_1 = the topological structure of X_2 .

In the sequel X_1 , X_2 are topological spaces.

One can prove the following propositions:

- (74) Suppose that
 - (i) the carrier of X_1 = the carrier of X_2 , and
- (ii) for every subset C_1 of X_1 and for every subset C_2 of X_2 such that $C_1 = C_2$ holds $Int C_1 = Int C_2$.

Then the topological structure of X_1 = the topological structure of X_2 .

- (75) Suppose that
 - (i) the carrier of X_1 = the carrier of X_2 , and
- (ii) for every subset C_1 of X_1 and for every subset C_2 of X_2 such that $C_1 = C_2$ holds $\overline{C_1} = \overline{C_2}$. Then the topological structure of X_1 = the topological structure of X_2 .

In the sequel D_1 denotes a subset of X_1 and D_2 denotes a subset of X_2 . One can prove the following propositions:

- (76) Suppose $D_1 = D_2$ and the topological structure of X_1 = the topological structure of X_2 . If D_1 is open, then D_2 is open.
- (77) If $D_1 = D_2$ and the topological structure of X_1 = the topological structure of X_2 , then Int $D_1 = \text{Int } D_2$.
- (78) If $D_1 \subseteq D_2$ and the topological structure of X_1 = the topological structure of X_2 , then Int $D_1 \subseteq \text{Int } D_2$.
- (79) Suppose $D_1 = D_2$ and the topological structure of X_1 = the topological structure of X_2 . If D_1 is closed, then D_2 is closed.
- (80) If $D_1 = D_2$ and the topological structure of X_1 = the topological structure of X_2 , then $\overline{D_1} = \overline{D_2}$.
- (81) If $D_1 \subseteq D_2$ and the topological structure of X_1 = the topological structure of X_2 , then $\overline{D_1} \subseteq \overline{D_2}$.
- (82) Suppose $D_2 \subseteq D_1$ and the topological structure of X_1 = the topological structure of X_2 . If D_1 is boundary, then D_2 is boundary.
- (83) Suppose $D_1 \subseteq D_2$ and the topological structure of X_1 = the topological structure of X_2 . If D_1 is dense, then D_2 is dense.
- (84) Suppose $D_2 \subseteq D_1$ and the topological structure of X_1 = the topological structure of X_2 . If D_1 is nowhere dense, then D_2 is nowhere dense.

In the sequel X_1 , X_2 denote non empty topological spaces, D_1 denotes a subset of X_1 , and D_2 denotes a subset of X_2 .

We now state the proposition

(85) Suppose $D_1 \subseteq D_2$ and the topological structure of X_1 = the topological structure of X_2 . If D_1 is everywhere dense, then D_2 is everywhere dense.

REFERENCES

- [1] Zbigniew Karno. Separated and weakly separated subspaces of topological spaces. *Journal of Formalized Mathematics*, 4, 1992. http://mizar.org/JFM/Vol4/tsep_1.html.
- [2] Kazimierz Kuratowski. Topology, volume I. PWN Polish Scientific Publishers, Academic Press, Warsaw, New York and London, 1966.
- [3] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/pre_topc.html.
- [4] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [5] Andrzej Trybulec. A Borsuk theorem on homotopy types. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/borsuk_1.html.
- [6] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.

[7] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/tops_1.html.

Received April 6, 1993

Published January 2, 2004