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Summary. We introduce properties of a series of nonnegativeR numbers, whereR
denotes the enlarged set of real numbers,R = R∪{−∞,+∞}. The paper contains definition
of supF and infF , for F being function, and a definition of a sumable subset ofR. We proved
the basic theorems regarding the definitions mentioned above. The work is the second part of
a series of articles concerning the Lebesgue measure theory.
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The articles [7], [9], [8], [6], [3], [10], [4], [5], [1], and [2] provide the notation and terminology for
this paper.

The extended real number 0R is defined by:

(Def. 1) 0R = 0.

Let x, y be extended real numbers. The functorx+y yielding an extended real number is defined
as follows:

(Def. 2)(i) There exist real numbersa, b such thatx = a andy = b andx+y = a+b if x∈ R and
y∈ R,

(ii) x+y = +∞ if x = +∞ andy 6=−∞ or y = +∞ andx 6=−∞,

(iii) x+y =−∞ if x =−∞ andy 6= +∞ or y =−∞ andx 6= +∞,

(iv) x+y = 0R, otherwise.

Let us observe that the functorx+y is commutative.
Next we state two propositions:

(1) For all extended real numbersx, y and for all real numbersa, b such thatx = a andy = b
holdsx+y = a+b.

(2) For every extended real numberx holdsx∈ R or x = +∞ or x =−∞.

Let x be an extended real number. The functor−x yielding an extended real number is defined
by:

(Def. 3)(i) There exists a real numbera such thatx = a and−x =−a if x∈ R,

(ii) −x =−∞ if x = +∞,

(iii) −x = +∞, otherwise.
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Let us observe that the functor−x is involutive.
Let x, y be extended real numbers. The functorx−y yielding an extended real number is defined

as follows:

(Def. 4) x−y = x+−y.

We now state a number of propositions:

(3) For every extended real numberx and for every real numbera such thatx = a holds−x =
−a.

(4) −−∞ = +∞.

(5) For all extended real numbersx, y and for all real numbersa, b such thatx = a andy = b
holdsx−y = a−b.

(6) For every extended real numberx such thatx 6= +∞ holds+∞−x= +∞ andx−+∞ =−∞.

(7) For every extended real numberx such thatx 6=−∞ holds−∞−x=−∞ andx−−∞ = +∞.

(8) For all extended real numbersx, s such thatx+s= +∞ holdsx = +∞ or s= +∞.

(9) For all extended real numbersx, s such thatx+s=−∞ holdsx =−∞ or s=−∞.

(10) For all extended real numbersx, s such thatx−s= +∞ holdsx = +∞ or s=−∞.

(11) For all extended real numbersx, s such thatx−s=−∞ holdsx =−∞ or s= +∞.

(12) For all extended real numbersx, ssuch thatx 6= +∞ or s 6=−∞ butx 6=−∞ or s 6= +∞ and
x+s∈ R holdsx∈ R ands∈ R.

(13) For all extended real numbersx, ssuch thatx 6= +∞ or s 6= +∞ butx 6=−∞ or s 6=−∞ and
x−s∈ R holdsx∈ R ands∈ R.

(14) Letx, y, s, t be extended real numbers. Supposex 6= +∞ or s 6=−∞ butx 6=−∞ or s 6= +∞
andy 6= +∞ or t 6=−∞ buty 6=−∞ or t 6= +∞ andx≤ y ands≤ t. Thenx+s≤ y+ t.

(15) Letx, y, s, t be extended real numbers. Supposex 6= +∞ or t 6= +∞ butx 6=−∞ or t 6=−∞
andy 6= +∞ or s 6= +∞ buty 6=−∞ or s 6=−∞ andx≤ y ands≤ t. Thenx− t ≤ y−s.

(16) For all extended real numbersx, y holdsx≤ y iff −y≤−x.

(17) For all extended real numbersx, y holdsx < y iff −y <−x.

(18) For every extended real numberx holdsx+0R = x and 0R +x = x.

(19) −∞ < 0R and 0R < +∞.

(20) For all extended real numbersx, y, zsuch that 0R ≤ zand 0R ≤ x andy = x+zholdsx≤ y.

(21) For every extended real numberx such thatx∈ N holds 0R ≤ x.

Let X, Y be non empty subsets ofR. The functorX +Y yields a subset ofR and is defined by
the condition (Def. 5).

(Def. 5) Letz be an extended real number. Thenz∈ X +Y if and only if there exist extended real
numbersx, y such thatx∈ X andy∈Y andz= x+y.

Let X, Y be non empty subsets ofR. Observe thatX +Y is non empty.
Let X be a non empty subset ofR. The functor−X yielding a subset ofR is defined as follows:

(Def. 6) For every extended real numberz holdsz∈ −X iff there exists an extended real numberx
such thatx∈ X andz=−x.
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Let X be a non empty subset ofR. Note that−X is non empty.
One can prove the following propositions:

(22) For every non empty subsetX of R holds−−X = X.

(23) For every non empty subsetX of R and for every extended real numberz holdsz∈ X iff
−z∈ −X.

(24) For all non empty subsetsX, Y of R holdsX ⊆Y iff −X ⊆−Y.

(25) For every extended real numberz holdsz∈ R iff −z∈ R.

(26) LetX, Y be non empty subsets ofR. Suppose−∞ /∈ X or +∞ /∈Y but+∞ /∈ X or−∞ /∈Y
and supX 6= +∞ or supY 6=−∞ but supX 6=−∞ or supY 6= +∞. Then sup(X +Y)≤ supX +
supY.

(27) LetX, Y be non empty subsets ofR. Suppose−∞ /∈ X or +∞ /∈Y but+∞ /∈ X or−∞ /∈Y
and infX 6= +∞ or infY 6=−∞ but infX 6=−∞ or infY 6= +∞. Then infX+ infY≤ inf(X+Y).

(28) For all non empty subsetsX, Y of R such thatX is upper bounded andY is upper bounded
holds sup(X +Y)≤ supX +supY.

(29) For all non empty subsetsX, Y of R such thatX is lower bounded andY is lower bounded
holds infX + infY ≤ inf(X +Y).

(30) LetX be a non empty subset ofR anda be an extended real number. Thena is a majorant
of X if and only if−a is a minorant of−X.

(31) LetX be a non empty subset ofR anda be an extended real number. Thena is a minorant
of X if and only if−a is a majorant of−X.

(32) For every non empty subsetX of R holds inf(−X) =−supX.

(33) For every non empty subsetX of R holds sup(−X) =−inf X.

Let X be a non empty set, letY be a non empty subset ofR, and letF be a function fromX into
Y. Then rngF is a non empty subset ofR.

Let X be a non empty set, letY be a non empty subset ofR, and letF be a function fromX into
Y. The functor supF yielding an extended real number is defined by:

(Def. 7) supF = suprngF.

Let X be a non empty set, letY be a non empty subset ofR, and letF be a function fromX into
Y. The functor infF yielding an extended real number is defined as follows:

(Def. 8) infF = inf rngF.

Let X be a non empty set, letY be a non empty subset ofR, let F be a function fromX into Y,
and letx be an element ofX. ThenF(x) is an extended real number.

The schemeFunctR ealExdeals with a non empty setA , a setB, and a unary functorF yielding
a set, and states that:

There exists a functionf from A into B such that for every elementx of A holds
f (x) = F (x)

provided the parameters have the following property:
• For every elementx of A holdsF (x) ∈ B.

Let X be a non empty set, letY, Z be non empty subsets ofR, let F be a function fromX intoY,
and letG be a function fromX into Z. The functorF +G yielding a function fromX into Y +Z is
defined by:

(Def. 9) For every elementx of X holds(F +G)(x) = F(x)+G(x).

One can prove the following three propositions:
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(34) LetX be a non empty set,Y, Z be non empty subsets ofR, F be a function fromX into Y,
andG be a function fromX into Z. Then rng(F +G)⊆ rngF + rngG.

(35) Let X be a non empty set andY, Z be non empty subsets ofR. Suppose−∞ /∈ Y or
+∞ /∈ Z but +∞ /∈ Y or −∞ /∈ Z. Let F be a function fromX into Y andG be a function
from X into Z. If supF 6= +∞ or supG 6= −∞ and if supF 6= −∞ or supG 6= +∞, then
sup(F +G)≤ supF +supG.

(36) LetX be a non empty set andY, Z be non empty subsets ofR. Suppose−∞ /∈Y or +∞ /∈ Z
but+∞ /∈Y or−∞ /∈ Z. Let F be a function fromX intoY andG be a function fromX into Z.
If inf F 6= +∞ or infG 6=−∞ and if infF 6=−∞ or infG 6= +∞, then infF + inf G≤ inf(F +G).

Let X be a non empty set, letY be a non empty subset ofR, and letF be a function fromX into
Y. The functor−F yields a function fromX into−Y and is defined by:

(Def. 10) For every elementx of X holds(−F)(x) =−F(x).

The following propositions are true:

(37) For every non empty setX and for every non empty subsetY of R and for every function
F from X into Y holds rng(−F) =−rngF .

(38) LetX be a non empty set,Y be a non empty subset ofR, andF be a function fromX into
Y. Then inf(−F) =−supF and sup(−F) =−inf F .

Let X be a non empty set, letY be a non empty subset ofR, and letF be a function fromX into
Y. We say thatF is upper bounded if and only if:

(Def. 11) supF < +∞.

Let X be a non empty set, letY be a non empty subset ofR, and letF be a function fromX into
Y. We say thatF is lower bounded if and only if:

(Def. 12) −∞ < inf F.

Let X be a non empty set, letY be a non empty subset ofR, and letF be a function fromX into
Y. We say thatF is bounded if and only if:

(Def. 13) F is upper bounded and lower bounded.

Let X be a non empty set and letY be a non empty subset ofR. Observe that every function
from X intoY which is bounded is also upper bounded and lower bounded and every function from
X into Y which is upper bounded and lower bounded is also bounded.

We now state a number of propositions:

(39) LetX be a non empty set,Y be a non empty subset ofR, andF be a function fromX into
Y. ThenF is bounded if and only if supF < +∞ and−∞ < inf F.

(40) LetX be a non empty set,Y be a non empty subset ofR, andF be a function fromX into
Y. ThenF is upper bounded if and only if−F is lower bounded.

(41) LetX be a non empty set,Y be a non empty subset ofR, andF be a function fromX into
Y. ThenF is lower bounded if and only if−F is upper bounded.

(42) LetX be a non empty set,Y be a non empty subset ofR, andF be a function fromX into
Y. ThenF is bounded if and only if−F is bounded.

(43) LetX be a non empty set,Y be a non empty subset ofR, F be a function fromX into Y,
andx be an element ofX. Then−∞≤ F(x) andF(x)≤+∞.

(44) LetX be a non empty set,Y be a non empty subset ofR, F be a function fromX into Y,
andx be an element ofX. If Y ⊆ R, then−∞ < F(x) andF(x) < +∞.
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(45) LetX be a non empty set,Y be a non empty subset ofR, F be a function fromX into Y,
andx be an element ofX. Then infF ≤ F(x) andF(x)≤ supF.

(46) LetX be a non empty set,Y be a non empty subset ofR, andF be a function fromX into
Y. If Y ⊆ R, thenF is upper bounded iff supF ∈ R.

(47) LetX be a non empty set,Y be a non empty subset ofR, andF be a function fromX into
Y. If Y ⊆ R, thenF is lower bounded iff infF ∈ R.

(48) LetX be a non empty set,Y be a non empty subset ofR, andF be a function fromX into
Y. If Y ⊆ R, thenF is bounded iff infF ∈ R and supF ∈ R.

(49) LetX be a non empty set andY, Z be non empty subsets ofR. SupposeY ⊆ R andZ⊆ R.
Let F1 be a function fromX intoY andF2 be a function fromX into Z. If F1 is upper bounded
andF2 is upper bounded, thenF1 +F2 is upper bounded.

(50) LetX be a non empty set andY, Z be non empty subsets ofR. SupposeY ⊆ R andZ⊆ R.
Let F1 be a function fromX intoY andF2 be a function fromX into Z. If F1 is lower bounded
andF2 is lower bounded, thenF1 +F2 is lower bounded.

(51) LetX be a non empty set andY, Z be non empty subsets ofR. SupposeY ⊆ R andZ⊆ R.
Let F1 be a function fromX into Y andF2 be a function fromX into Z. If F1 is bounded and
F2 is bounded, thenF1 +F2 is bounded.

(52) There exists a functionF from N into R such thatF is one-to-one andN = rngF and rngF
is a non empty subset ofR.

Let D be a non empty set and letI1 be a subset ofD. Let us observe thatI1 is countable if and
only if:

(Def. 14) I1 is empty or there exists a functionF from N into D such thatI1 = rngF.

We introduceI1 is denumerable as a synonym ofI1 is countable.
Let us observe that there exists a non empty subset ofR which is denumerable.
A denumerable set of larged real is a denumerable non empty subset ofR.
Let I1 be a set. We say thatI1 is non-negative if and only if:

(Def. 15) For every extended real numberx such thatx∈ I1 holds 0R ≤ x.

Let us note that there exists a denumerable set of larged real which is non-negative.
A denumerable set of positive larged real is a non-negative denumerable set of larged real.
Let D be a denumerable set of larged real. A function fromN into R is said to be a numeration

of D if:

(Def. 16) D = rng it.

Let N be a function fromN into R and letn be a natural number. ThenN(n) is an extended real
number.

One can prove the following proposition

(53) LetD be a denumerable set of larged real andN be a numeration ofD. Then there exists a
functionF from N into R such that

(i) F(0) = N(0), and

(ii) for every natural numbern and for every extended real numbery such thaty = F(n) holds
F(n+1) = y+N(n+1).

Let D be a denumerable set of larged real and letN be a numeration ofD. The functor Ser(D,N)
yields a function fromN into R and is defined by the conditions (Def. 17).

(Def. 17)(i) Ser(D,N)(0) = N(0), and

(ii) for every natural numbernand for every extended real numberysuch thaty= Ser(D,N)(n)
holds Ser(D,N)(n+1) = y+N(n+1).
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The following three propositions are true:

(54) Let D be a denumerable set of positive larged real,N be a numeration ofD, andn be a
natural number. Then 0R ≤ N(n).

(55) Let D be a denumerable set of positive larged real,N be a numeration ofD, andn be a
natural number. Then Ser(D,N)(n)≤ Ser(D,N)(n+1) and 0R ≤ Ser(D,N)(n).

(56) LetD be a denumerable set of positive larged real,N be a numeration ofD, andn, m be
natural numbers. Then Ser(D,N)(n)≤ Ser(D,N)(n+m).

Let D be a denumerable set of larged real. A non empty subset ofR is said to be a set of series
of D if:

(Def. 18) There exists a numerationN of D such that it= rngSer(D,N).

Let F be a function fromN into R. Then rngF is a non empty subset ofR.
Let D be a denumerable set of positive larged real and letN be a numeration ofD. The functor

∑D N yielding an extended real number is defined as follows:

(Def. 19) ∑D N = suprngSer(D,N).

Let D be a denumerable set of positive larged real and letN be a numeration ofD. We say that
D is N summable if and only if:

(Def. 20) ∑D N ∈ R.

Next we state the proposition

(57) For every functionF from N into R holds rngF is a denumerable set of larged real.

Let F be a function fromN into R. Then rngF is a denumerable set of larged real.
Let F be a function fromN into R. The functor SerF yields a function fromN into R and is

defined by:

(Def. 21) For every numerationN of rngF such thatN = F holds SerF = Ser(rngF,N).

Let X be a set and letF be a function fromX into R. We say thatF is non-negative if and only
if:

(Def. 22) rngF is non-negative.

Let F be a function fromN into R. The functor∑F yields an extended real number and is
defined as follows:

(Def. 23) ∑F = suprngSerF.

The following propositions are true:

(58) LetX be a non empty set andF be a function fromX into R. ThenF is non-negative if and
only if for every elementn of X holds 0R ≤ F(n).

(59) LetF be a function fromN into R andn be a natural number. IfF is non-negative, then
(SerF)(n)≤ (SerF)(n+1) and 0R ≤ (SerF)(n).

(60) LetF be a function fromN intoR. SupposeF is non-negative. Letn, mbe natural numbers.
Then(SerF)(n)≤ (SerF)(n+m).

(61) Let F1, F2 be functions fromN into R. SupposeF1 is non-negative. Suppose that for
every natural numbern holdsF1(n) ≤ F2(n). Let n be a natural number. Then(SerF1)(n) ≤
(SerF2)(n).

(62) Let F1, F2 be functions fromN into R. SupposeF1 is non-negative. If for every natural
numbern holdsF1(n)≤ F2(n), then∑F1 ≤ ∑F2.
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(63) LetF be a function fromN into R. Then

(i) (SerF)(0) = F(0), and

(ii) for every natural numbern and for every extended real numbery such thaty = (SerF)(n)
holds(SerF)(n+1) = y+F(n+1).

(64) Let F be a function fromN into R. SupposeF is non-negative. If there exists a natural
numbern such thatF(n) = +∞, then∑F = +∞.

Let F be a function fromN into R. We say thatF is summable if and only if:

(Def. 24) ∑F ∈ R.

The following propositions are true:

(65) Let F be a function fromN into R. SupposeF is non-negative. If there exists a natural
numbern such thatF(n) = +∞, thenF is not summable.

(66) LetF1, F2 be functions fromN into R. SupposeF1 is non-negative. Suppose that for every
natural numbern holdsF1(n)≤ F2(n). If F2 is summable, thenF1 is summable.

(67) LetF be a function fromN into R. SupposeF is non-negative. Letn be a natural number.
If for every natural numberr such thatn≤ r holdsF(r) = 0R, then∑F = (SerF)(n).

(68) LetF be a function fromN intoR. Suppose that for every natural numbern holdsF(n)∈R.
Let n be a natural number. Then(SerF)(n) ∈ R.

(69) LetF be a function fromN into R. SupposeF is non-negative. Given a natural numbern
such that for every natural numberk such thatn≤ k holdsF(k) = 0R and for every natural
numberk such thatk≤ n holdsF(k) 6= +∞. ThenF is summable.
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[3] Józef Białas. Infimum and supremum of the set of real numbers. Measure theory.Journal of Formalized Mathematics, 2, 1990.
http://mizar.org/JFM/Vol2/supinf_1.html.
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