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Summary. We introduce properties of a series of nonnegalveumbers, wher®
denotes the enlarged set of real numb&rs; RU {—, +o}. The paper contains definition
of supF and infF, for F being function, and a definition of a sumable subsé oiVe proved
the basic theorems regarding the definitions mentioned above. The work is the second part of
a series of articles concerning the Lebesgue measure theory.
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The articles([¥],19],1[8], 6], [3], [10],14], [5], [1], and 2] provide the notation and terminology for
this paper.
The extended real numbeg @& defined by:

(Def.1) Q;=0.

Letx, y be extended real numbers. The functery yielding an extended real number is defined
as follows:

(Def. 2)()) There exist real numbess b such thatx=a andy=b andx+y=a+bif xe R and
yeR,
(i) X+y=+ooif Xx=+00 andy# —oo Ory = +oo andx £ —oo,
(i) Xx+y=—ocoif x=—00andy # 4o ory= —oco andx # +oo,
(iv) x+y=0g, otherwise.

Let us observe that the functery is commutative.
Next we state two propositions:

(1) For all extended real numbexsy and for all real numbers, b such thatk =aandy=b
holdsx+y=a+h.

(2) For every extended real numbeholdsx € R or X = 40 or X = —oo.

Let x be an extended real number. The functoryielding an extended real number is defined
by:
(Def. 3)()) There exists a real numbasuch thatkk =aand—x= —aif xe R,
(i) —Xx=—o0if x= 40,
(i)  —x= +oo, otherwise.
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Let us observe that the functeix is involutive.
Letx, y be extended real numbers. The functery yielding an extended real number is defined
as follows:

(Def. 4) x—y=x+-y.
We now state a number of propositions:

(3) For every extended real numbeand for every real numbersuch thaix = a holds—x =
—a.

(4) ——eo= o

(5) For all extended real numbexsy and for all real numbers, b such thatk =a andy=b
holdsx—y=a—h.

(6) For every extended real numbesuch thak ## +oco holds+oc0 — x = 400 andx— +o0 = —oo.
(7) For every extended real numbesuch thak = —oo holds—oo — x = —c0 andx— —oo = +-oo.
(8) For all extended real numbexss such thatk+ s= +o0 holdsx = +o0 Or s= +00,
(9) For all extended real numbexss such thatk+ s= —oo holdsx = —o0 Or s= —o0,

(10) For all extended real numbextss such thak — s = +o holdsx = +o or s= —co.

(11) For all extended real numbetss such thak — s= —o holdsx = —c or = 0.

(12) For all extended real numbetss such thai # +o0 or s —oco butXx £ —eo or s# 400 and
X+se R holdsx € R andse R.

(13) For all extended real numbetss such thai # +o or s +oc0 butx # —co0 or s# —o0 and
x—se€ R holdsx€ R andse€ R.

(14) Letx,y, s t be extended real numbers. Supprse-+o or s# —oo butx = —oo Or S +o0
andy # 4o ort # —oo buty # —o ort # 40 andx < yands<t. Thenx+s<y-+t.

(15) Letx,y, s, t be extended real numbers. SupprsE-+oo Ort # oo butx £ —oo Ort #£ —oo
andy # -+ Or S# +o0 buty # —o0 0r s# —0 andx < yands<t. Thenx—t <y-s.

(16) For all extended real numbetsy holdsx <y iff —y < —x.

(17) For all extended real numbetsy holdsx < y iff —y < —x.

(18) For every extended real numbemnoldsx+ Oz = x and Gy +Xx = x.

(19) —o <0z and G; < +.

(20) For all extended real numbetsy, zsuch that @ < zand G; < xandy = x+zholdsx <.

(21) For every extended real numbesuch thak € N holds G; < x.

Let X, Y be non empty subsets &. The functorX +Y yields a subset dR and is defined by
the condition (Def. 5).

(Def. 5) Letzbe an extended real number. Thea X +Y if and only if there exist extended real
numbers, y such thak € X andy € Y andz= x+Y.

Let X, Y be non empty subsetEE Observe thaK +Y is non empty.
Let X be a non empty subset Bf The functor—X yielding a subset aR is defined as follows:

(Def. 6) For every extended real numtzdnoldsz € —X iff there exists an extended real number
such thak € X andz= —x.
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Let X be a non empty subset Bf Note that—X is non empty.
One can prove the following propositions:

(22) For every non empty subs¢tof R holds——X = X.

(23) For every non empty subsktof R and for every extended real numizholdsz € X iff
—ze —X.

(24) For all non empty subse¥s Y of R holdsX C Y iff —X C —Y.
(25) For every extended real numtahtoldsze R iff —ze€ R.

(26) LetX,Y be non empty subsets Bf Suppose-o ¢ X or +o ¢ Y but+o ¢ X or —o ¢Y
and supX # +oo or supY # —oo but supX # —oo or supY # +oo. Then supX +Y) < supX +
supy.

(27) LetX,Y be non empty subsets Bf Suppose-« ¢ X or 4+ ¢ Y but+c ¢ X or —o0 &Y
and infX #£ +oo orinfY £ —oo but infX £ —oco or infY £ 4-c0. Then infX 4 infY <inf(X+Y).

(28) For all non empty subseXs Y of R such thatX is upper bounded andis upper bounded
holds supX +Y) < supX + supy.

(29) For all non empty subseXs Y of R such thaiX is lower bounded an¥ is lower bounded
holds infX 4+ infY <inf(X+Y).

(30) LetX be a non empty subset B anda be an extended real number. Theis a majorant
of X if and only if —ais a minorant of-X.

(31) LetX be a non empty subset Bfanda be an extended real number. Treis a minorant
of X if and only if —ais a majorant of-X.

(32) For every non empty subsétof R holds inf(—X) = —supX.
(33) For every non empty subsétof R holds sugp—X) = —inf X.

Let X be a non empty set, ¥t be a non empty subset & and letF be a function fronX into
Y. Then rngF is a non empty subset &.

Let X be a non empty set, &t be a non empty subset Bf and letF be a function fronX into
Y. The functor suf yielding an extended real number is defined by:

(Def. 7) sug- =suprng-.

Let X be a non empty set, [#tbe a non empty subset & and letF be a function fronX into
Y. The functor inf yielding an extended real number is defined as follows:

(Def. 8) infF =infrngF.

Let X be a non empty set, |&tbe a non empty subset Bf, let F be a function fromX into Y,
and letx be an element ok. ThenF (x) is an extended real number.
The schemé&unctR ealExdeals with a non empty sét, a setB, and a unary functof* yielding
a set, and states that:
There exists a functiori from 4 into B such that for every elementof 4 holds
f(x) = F(x)
provided the parameters have the following property:
e For every element of 4 holds 7 (x) € B.
Let X be a non empty set, I&t, Z be non empty subsets & let F be a function fronX into'Y,
and letG be a function fromX into Z. The functor- + G yielding a function fromX intoY +Z is
defined by:

(Def. 9) For every elementof X holds(F + G)(x) = F(X) + G(X).

One can prove the following three propositions:
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(34) LetX be a non empty seY,, Z be non empty subsets & F be a function fronX into Y,
andG be a function fronX into Z. Then rndF + G) C rngF + rngG.

(35) LetX be a non empty set and, Z be non empty subsets &. Suppose-« ¢ Y or
+oo ¢ Zbut+oo ¢Y or —o ¢ Z. Let F be a function fromX into Y and G be a function
from X into Z. If supF # 400 or supG # —c and if sug- # —o or supG # 4o, then
supF + G) < supF + supG.

(36) LetX be anon empty set ant] Z be non empty subsets Bf Suppose-o ¢ Y or +o ¢ Z
but+c ¢Y or —eo ¢ Z. LetF be a function fronX intoY andG be a function fronX into Z.
Ifinf F # 400 OrinfG #£ —oo and if infF # —oo or inf G # 400, then infF +-inf G <inf(F + G).

Let X be a non empty set, I#tbe a non empty subset & and letF be a function fronX into
Y. The functor—F yields a function fronX into —Y and is defined by:

(Def. 10) For every elementof X holds(—F)(x) = —F(x).

The following propositions are true:

(37) For every non empty s&t and for every non empty subsétof R and for every function
F from X intoY holds rnd—F) = —rngF.

(38) LetX be a non empty seY, be a non empty subset &, andF be a function fronX into
Y. Then inf—F) = —supF and sup—F) = —infF.

Let X be a non empty set, 1§t be a non empty subset Bf and letF be a function fronX into
Y. We say thaF is upper bounded if and only if:

(Def. 11) supr < +oo.

Let X be a non empty set, It be a non empty subset & and letF be a function fronX into
Y. We say thaF is lower bounded if and only if:

(Def. 12) —oo <infF.

Let X be a non empty set, I#tbe a non empty subset & and letF be a function fronX into
Y. We say thaF is bounded if and only if:

(Def. 13) F is upper bounded and lower bounded.

Let X be a non empty set and [étbe a non empty subset &. Observe that every function
from X into Y which is bounded is also upper bounded and lower bounded and every function from
X intoY which is upper bounded and lower bounded is also bounded.

We now state a number of propositions:

(39) LetX be a non empty seY, be a non empty subset &, andF be a function fronX into
Y. ThenF is bounded if and only if sup < +o and—e < infF.

(40) LetX be a non empty seY, be a non empty subset &, andF be a function fronX into
Y. ThenF is upper bounded if and only #F is lower bounded.

(41) LetX be a non empty seY, be a non empty subset &, andF be a function fronX into
Y. ThenF is lower bounded if and only if-F is upper bounded.

(42) LetX be a non empty seY, be a non empty subset &, andF be a function fronX into
Y. ThenF is bounded if and only if-F is bounded.

(43) LetX be a non empty se¥, be a non empty subset & F be a function fromX into Y,
andx be an element aX. Then—o < F(x) andF (x) < oo,

(44) LetX be a non empty se¥, be a non empty subset & F be a function fromX into Y,
andx be an element oX. If Y C R, then—o < F(x) andF(X) < +.
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(45) LetX be a non empty se¥, be a non empty subset & F be a function fromX into Y,
andx be an element oK. Then infF < F(x) andF (x) < supF.

(46) LetX be a non empty seY, be a non empty subset &, andF be a function fronX into
Y. If Y C R, thenF is upper bounded iff sup € R.

(47) LetX be a non empty seY, be a non empty subset &, andF be a function fronX into
Y. If Y C R, thenF is lower bounded iff inF € R.

(48) LetX be a non empty seY, be a non empty subset &, andF be a function fronX into
Y. If Y C R, thenF is bounded iff inf- € R and sug- € R.

(49) LetX be a non empty set ant| Z be non empty subsets Bf Suppos¢&f C R andZ C R.
LetF; be a function fronX into Y andF, be a function fronX into Z. If F; is upper bounded
andF; is upper bounded, thef + F is upper bounded.

(50) LetX be a non empty set antl Z be non empty subsets Bf Suppos&/ C R andZ C R.
Let F; be a function fronX intoY andF; be a function fronX into Z. If F; is lower bounded
andFR; is lower bounded, theR; + F, is lower bounded.

(51) LetX be a non empty set ant] Z be non empty subsets Bf. Suppos& C R andZ C R.
Let F; be a function fronX into Y andF, be a function fronX into Z. If F; is bounded and
F is bounded, thek; + F, is bounded.

(52) There exists a functiof from N into R such thaF is one-to-one antil = rngF and rngF
is a non empty subset &.

Let D be a non empty set and Igtbe a subset dD. Let us observe thdi is countable if and
only if:

(Def. 14) |4 is empty or there exists a functidghfrom N into D such that; = rngF.

We introducd is denumerable as a synonymlgfs countable.
Let us observe that there exists a non empty subsitvatiich is denumerable.
A denumerable set of larged real is a denumerable non empty suli®et of
Letl; be a set. We say thét is non-negative if and only if:

(Def. 15) For every extended real numixesuch that € 11 holds G; < x.

Let us note that there exists a denumerable set of larged real which is non-negative.

A denumerable set of positive larged real is a non-negative denumerable set of larged real.

Let D be a denumerable set of larged real. A function fidrimto R is said to be a numeration
of D if:

(Def. 16) D =rngit.

LetN be a function fronN into R and letn be a natural number. Théwy(n) is an extended real
number.

One can prove the following proposition
(53) LetD be a denumerable set of larged real &hbe a numeration d. Then there exists a
functionF from N into R such that
(i) F(0)=N(0),and
(i) for every natural numbem and for every extended real numbesuch thay = F (n) holds
F(n+1) =y+N(n+1).

Let D be a denumerable set of larged real andNlee a numeration dd. The functor SeiD, N)
yields a function fronN into R and is defined by the conditions (Def. 17).

(Def. 17)(i)  SetD,N)(0) = N(0), and

(i) forevery natural numbemand for every extended real numlyesuch thayy = Ser(D,N)(n)
holds SefD,N)(n+1) =y+N(n+1).
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The following three propositions are true:

(54) LetD be a denumerable set of positive larged réabe a numeration ob, andn be a
natural number. Theng0< N(n).

(55) LetD be a denumerable set of positive larged réabhe a numeration ob, andn be a
natural number. Then S@,N)(n) < SeD,N)(n+1) and G < SerD,N)(n).

(56) LetD be a denumerable set of positive larged réhhe a numeration oD, andn, m be
natural numbers. Then S&r,N)(n) < SefD,N)(n+m).

Let D be a denumerable set of larged real. A non empty subdRti®faid to be a set of series
of D if:

(Def. 18) There exists a numeratidhof D such that it= rng SefD, N).

Let F be a function fronN into R. Then rngF is a non empty subset &.
Let D be a denumerable set of positive larged real antlllbé a numeration db. The functor
> b N yielding an extended real number is defined as follows:

(Def. 19) SpN=suprngSeiD,N).

Let D be a denumerable set of positive larged real antllleé a numeration dd. We say that
D is N summable if and only if:

(Def. 20) TpNeR.

Next we state the proposition
(57) For every functiofr from N into R holds rngF is a denumerable set of larged real.

Let F be a function fronlN into R. Then rng~ is a denumerable set of larged real.
Let F be a function fromN into R. The functor Sef yields a function fromN into R and is
defined by:

(Def. 21) For every numeratiod of rngF such thalN = F holds SeF = Ser(rngF,N).

Let X be a set and Iék be a function fronX into R. We say thafF is non-negative if and only
if:

(Def. 22) rng- is non-negative.

Let F be a function fromN into R. The functory F yields an extended real number and is
defined as follows:

(Def. 23) S F =suprngSeF.

The following propositions are true:

(58) LetX be a non empty set arftibe a function fronX into R. ThenF is non-negative if and
only if for every element of X holds G; < F(n).

(59) LetF be a function fronN into R andn be a natural number. F is non-negative, then
(SerF)(n) < (SerF)(n+1) and G < (SerF)(n).

(60) LetF be afunction fronN into R. Supposé is non-negative. Lat, mbe natural numbers.
Then(SerF)(n) < (SerF)(n+m).

(61) LetF1, R be functions fromN into R. SupposeF; is non-negative. Suppose that for
every natural numbar holdsF;(n) < F»(n). Let n be a natural number. Thé®erF;)(n) <
(Ser)(n).

(62) LetF;, F» be functions fromN into R. Supposer; is non-negative. If for every natural
numbem holdsFi(n) < Fx(n), theny F < S K.
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(63) LetF be afunction fronN into R. Then
(i) (SerF)(0)=F(0),and
(i) for every natural numben and for every extended real numhesuch thay = (SerF)(n)
holds(SefF)(n+1) =y+F(n+1).

(64) LetF be a function fronN into R. SupposeF is non-negative. If there exists a natural
numbem such thaf (n) = +o, theny F = +oo.

Let F be a function fronN into R. We say thaF is summable if and only if:
(Def. 24) SFeR.
The following propositions are true:

(65) LetF be a function fromN into R. Supposé- is non-negative. If there exists a natural
numbem such thaf (n) = +o, thenF is not summable.

(66) LetFy, F be functions fronN into R. Supposé; is non-negative. Suppose that for every
natural numben holdsF;(n) < F(n). If Ry is summable, theR; is summable.

(67) LetF be a function fronN into R. Supposé= is non-negative. Let be a natural number.
If for every natural number such than <r holdsF (r) = O, theny F = (SerF)(n).

(68) LetF be afunction fronN into R. Suppose that for every natural numbéldsF (n) € R.
Let n be a natural number. ThéBerF)(n) € R.

(69) LetF be a function fronN into R. Supposé is non-negative. Given a natural numimer
such that for every natural numblesuch than < k holdsF (k) = Oz and for every natural
numberk such thak < nholdsF (k) # +c. ThenF is summable.

REFERENCES

[1] Grzegorz Bancerek. The fundamental properties of natural numBersnal of Formalized Mathematicd, 1989./http://mizar.
org/JFM/Voll/nat_1.html}

[2] Grzegorz Bancerek. Countable sets and Hessenberg's thed@amal of Formalized Mathematic®, 1990. http://mizar.org/
JFM/Vol2/card_4.html,

[3] Jozef Biatas. Infimum and supremum of the set of real numbers. Measure thdouynal of Formalized Mathematic®, 1990.
http://mizar.org/JFM/Vol2/supinf_1.html,

[4] Czestaw Bylhski. Functions and their basic propertidsurnal of Formalized Mathematic, 1989/http://mizar.org/JFM/Voll/
funct_1.html.

[5] Czestaw Bylhski. Functions from a set to a séburnal of Formalized Mathematics, 1989/http://mizar.org/JFM/Voll/funct_|
2.htmll

[6

Krzysztof Hryniewiecki. Basic properties of real numbedgurnal of Formalized Mathematicd, 1989.http://mizar.org/JFM/
Voll/real_1.html}

[7] Andrzej Trybulec. Tarski Grothendieck set theodpurnal of Formalized Mathematicéxiomatics, 1989http://mizar.org/JFM/
Axiomatics/tarski.htmll

[8] Andrzej Trybulec. Subsets of real numbedsurnal of Formalized MathematicAddenda, 2003http://mizar.org/JFM/Addenda/
numbers.htmll

[9] Zinaida Trybulec. Properties of subselsurnal of Formalized Mathematic$, 1989http://mizar.org/JFM/Voll/subset_1.htmll

[10] Edmund Woronowicz. Relations and their basic propertiksirnal of Formalized Mathematic4, 1989./http://mizar.org/JFM/
Voll/relat_1.html}

Received September 27, 1990

Published January 2, 2004


http://mizar.org/JFM/Vol1/nat_1.html
http://mizar.org/JFM/Vol1/nat_1.html
http://mizar.org/JFM/Vol2/card_4.html
http://mizar.org/JFM/Vol2/card_4.html
http://mizar.org/JFM/Vol2/supinf_1.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/funct_2.html
http://mizar.org/JFM/Vol1/funct_2.html
http://mizar.org/JFM/Vol1/real_1.html
http://mizar.org/JFM/Vol1/real_1.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Addenda/numbers.html
http://mizar.org/JFM/Addenda/numbers.html
http://mizar.org/JFM/Vol1/subset_1.html
http://mizar.org/JFM/Vol1/relat_1.html
http://mizar.org/JFM/Vol1/relat_1.html

	series of positive real numbers. … By józef bialas

