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Summary. Some further theorems concerning probability, among them the equivalent
definition of probability are discussed, followed by notions of independence of events and
conditional probability and basic theorems on them.
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The articles([10],15],[[12],[[2],[[11],1218],16],18],[14],18],[7],19], and [1] provide the notation and
terminology for this paper.

For simplicity, we use the following conventio@®; is a non empty sein, nare natural numbers,
X, y are setsy, rq, rp, rz are real numbersy, s, are sequences of real numbegg,is a o-field of
subsets 0D1, Ag, B; are sequences of subsetsSpf P, P, are probabilities o1g;, andA, B, C, Ap,

Az, A4 are events 08;.
One can prove the following three propositions:

(4ﬂ For allr, rq, rp, r3 such that # 0 andr; # 0 holds:—i = %2 iff rg-r=ro-ry.

(5) If s1is convergent and for everyholdss;(n) =r —s;(n), thens; is convergent and lirsp =
r—lims.

(6) ANO;=AandAn Q(Sl) =A

The schemé&eqExProlaleals with a unary functaf yielding a set, and states that:
There exists a functiof such that donf = N and for everyn holds f (n) = # (n)
for all values of the parameter.
Let us conside®s, S;, A1, n. ThenAy(n) is an event of5;.
Let us conside®1, S;, A;. The functon) Az yields an event 0§, and is defined as follows:

(Def. 1) N AL = Intersectiory;.
We now state several propositions:
(9F There exists; such that for every holdsB; (n) = Ay (n) NB.
(10) If Ag is non-increasing and for evenyholdsBj(n) = A;(n) N B, thenB; is non-increasing.
(11) For every functiorf from Sy into R holds(f - A1)(n) = f(A1(n)).

(12) |If for everyn holdsB; (n) = A1(n) N B, then IntersectioA; N B = IntersectiorB;.

1 The propositions (1)—(3) have been removed.
2 The propositions (7) and (8) have been removed.
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(13) Iffor everyAholdsP(A) = Pi(A), thenP = Py.

(14) For every sequenck of subsets ofD; holdsA; is non-increasing iff for every holds
Ar(n+1) C Ag(n).

(15) For every sequendk of subsets ofd; holdsA; is non-decreasing iff for every holds
Ag(n) CA(n+1).

(16) For all sequences;, B; of subsets 0D such that for every holdsA;(n) = B1(n) holds
A1 = By.

(17) For every sequenad®; of subsets 0fD; holdsA; is non-increasing iff ComplemeAt is
non-decreasing.

Let us consideD,, S, A;. The functorA; € yielding a sequence of subsetsSifis defined by:
(Def. 2) A:° = Complemend;.

Let F be a function. We say th&t is disjoint valued if and only if:
(Def. 3) If x#£Yy, thenF(x) misses-(y).

Let us consideD1, S;, A;. Let us observe tha; is disjoint valued if and only if:
(Def. 4) For allm, n such tham # n holdsA; (m) missesA; (n).

One can prove the following propositions:

(20 Let P be a function fromS; into R. ThenP is a probability onS; if and only if the
following conditions are satisfied:

(i) for everyAholds 0< P(A),
(i) POy)=1,
(i)  forall A, B such thatA missesB holdsP(AUB) = P(A) + P(B), and
(iv) for every A; such thatA; is non-decreasing hold3- A; is convergent and lifP- A;) =

P(UA).
(21) P(AUBUC) = ((P(A)+P(B)+P(C))— (P(ANB)+P(BNC)+P(ANC)))+P(ANBNC).
(22) P(A\ANB)=P(A)—P(ANB).
(23) P(ANB) < P(B) andP(ANB) < P(A).
(24) IfC=B¢ thenP(A) =P(ANB)+P(ANC).
(25) (P(A)+P(B))—1<P(ANB).
(26) P(A)=1-P(Qs)\A).
(27) P(A) <1iff0 <P(Q(s) \A).
(28) P(Qs) \A) <1iff0 <P(A).
Let us conside®s, S, P, A, B. We say thafA andB are independent w.iR if and only if:
(Def.5) P(ANB)=P(A)-P(B).
Let us conside€. We say tha#\, B andC are independent w.R if and only if:

(Def. 6) P(ANBNC) = P(A)-P(B)-P(C) andP(ANB) = P(A) - P(B) andP(ANC) = P(A) - P(C)
andP(BNC) = P(B) - P(C).

3 The propositions (18) and (19) have been removed.
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We now state a number of propositions:

(31&] A andB are independent w.R iff B andA are independent w.IR.

(32) A, BandC are independent w.iR if and only if the following conditions are satisfied:
(i) P(ANBNC)=P(A)-P(B)-P(C),
(i) AandB are independent w.iR,

(i)  BandC are independent w.i?, and

(iv) AandC are independent w.1R.

(33) If A,BandC are independent w.i?, thenB, A andC are independent w.iR.
(34) If A,BandC are independent w.i, thenA, C andB are independent w.iR.
(35) For every everi of §; such thaE = 0 holdsA andE are independent w.iR.
(36) AandQ) are independent w.iR.

(37) ForallA, B, P such thath andB are independent w.iR holdsA andQg \ B are indepen-
dent w.r.tP.

an are independent w.IR, then an are independent w.1R.
38) If AandBare independent w.R, thenQ s\ AandQ g, \ B are independent w.i?

(39) LetgivenA, B, C, P. Supposé\ andB are independent w.i? andA andC are independent
w.r.t P andB misse<C. ThenA andBUC are independent w.iR.

(40) ForallP, A, B such thatA andB are independent w.IR andP(A) < 1 andP(B) < 1 holds
P(AUB) < 1.

Letus conside®, S, P, B. Let us assume that€9 P(B). The functor(P|B) yields a probability
onS; and is defined as follows:

(Def. 7) For evenA holds(P|B)(A) = B

The following propositions are true:
(42E] For allP, B, A such that 0< P(B) holdsP(ANB) = (P|B)(A) - P(B).
(43) For allP, A, B, C such that 0< P(ANB) holdsP(ANBNC) = P(A) - (P|A)(B) - (P|(AN
B))(C).
(44) For allP, A, B, C such thalC = B® and 0< P(B) and 0< P(C) holdsP(A) = (P|B)(A) -
P(B) + (PIC)(A) - P(C).

(45) LetgivenP, A, Ay, Az, A4. Supposed; misseshg andAs = (A2 UAg)¢ and 0< P(Ay) and
0 < P(Ag) and 0< P(A4). ThenP(A) = (P|A2)(A) - P(A2) + (P|A3) (A) - P(Ag) + (P|A4) (A) -
P(Ag).

(46) ForallP, A, B such that 6< P(B) holds(P|B)(A) = P(A) iff AandB are independent w.r.t
P.

(47) For allP, A, B such that 6< P(B) andP(B) < 1 and(P|B)(A) = (P|(Q(s,) \ B))(A) holds
A andB are independent w.IR.

(48) ForallP, A, B such that 0< P(B) holds P2 EBI= < (p[B)(A).

(49) ForallA, B, Psuch that 0< P(A) and 0< P(B) holds (P|B)(A) = FAELEA.

4 The propositions (29) and (30) have been removed.
5 The proposition (41) has been removed.
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(50) Let givenB, Ay, Az, P. Suppose &< P(B) andAs = Ax® and 0< P(A2) and 0< P(Ag).

P|A2)(B)-P(A; P|A3)(B)-P(A;
Then(PIB) (A2) = (o, i) o) s Brpias) 2N (PIB)(A) = (oriyia) ime) - (Pl 7P

(51) LetgivenB, Ay, Ag, A4, P. Suppose & P(B) and 0< P(Ay) and 0< P(A3) and 0< P(Ay)

andA; missesAz andAs = (A2 UAg)C. Then

i _ (PIA2)(B)-P(A2)
() (PIB)(A2) = (piay) @) Piay T (PIAs) (B) P(As) T(P/A) (B PTA)
. _ (PIAS)(B)-P(As)
(i) (PIB)(As) = (piay) By PiAy T(PIAs) (B) P(As) T(PIA (B P(Ay) » AN
_ (PIA)(B)-P(A)
(i) (PIB)(A4) = (o) By (Pl (B) P(As) T (PR (B PTAG)

(52) ForallA, B, P such that 0< P(B) holds 1- 0% < (p(B)(A).
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