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Summary. The main result of the paper is, that the ring of polynomials witvari-
ables and coefficients in the ring of polynomials withvariables and coefficient in a rirlg
is isomorphic with the ring witto; + 0, variables, and coefficients In

MML Identifier: POLYNOM6.

WWW: http://mizar.org/JFM/Voll3/polynomé6.html

The articles([211],[12[7],[23],[[13],[[28],18],.[9],[[20], 1] ,[[22] [14]/T24] 11 7] 111] [5][[10] L [26],
[12], [6l, 21, [3, [4], [25], [7], [19], [15], [29], [18], and [16] provide the notation and terminology
for this paper.

1. PRELIMINARIES

In this papero;, 02 denote ordinal numbers.

LetLy, Lo be non empty double loop structures. Let us note that the predigé&eaing isomor-
phic toL; is reflexive. We introduck; andL, are isomorphic as a synonymlof is ring isomorphic
to Lo.

Next we state the proposition

(1) LetBbe aset. Suppose that for every sébldsx € B iff there exists an ordinal number
such thak = 0; + 0 ando € 0,. Theno; + 0, = 01 UB.

Let 0, be an ordinal number and leg be a non empty ordinal number. One can check that
01 + 02 iS non empty ana, + 01 is hon empty.
We now state the proposition

(2) Letn be an ordinal number aral b be bags oh. Suppose < b. Then there exists an
ordinal numbeio such thab € n anda(o) < b(o) and for every ordinal numbérsuch that
| € oholdsa(l) = b(l).

2. ABOUT BAGS

Let 01, 02 be ordinal numbers, let be an element of Bagg, and letb be an element of Bags.
The functora+ b yields an element of Bags; + 02) and is defined as follows:

(Def. 1) For every ordinal numberholds ifo € 01, then(a+b)(0) = a(0) and ifo € (01 +02) \ 01,
then(a+b)(0) =b(o—01).

We now state several propositions:
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(3) For every elemerd of Bagso; and for every elemerti of Bagso, such thaio, = 0 holds
at+b=a

(4) For every elemerd of Bagso; and for every elemerti of Bagso, such thaib; = 0 holds
a+b=h.

(5) For every elemeni; of Bagso; and for every element, of Bagso, holds by + by =
EmptyBado; + 0p) iff by = EmptyBagp; andby, = EmptyBagps.

(6) Forevery elementof Baggo; + 0p) there exists an elemeot of Bagso; and there exists
an element; of Bagso; such that = ¢; + ;.

(7) For all elements, ¢; of Bagso; and for all elementb;, ¢, of Bagso, such thab; + by =
C1+ ¢ holdsb; = ¢; andby = co.

(8) Letn be an ordinal numbelt, be an Abelian add-associative right zeroed right comple-
mentable distributive associative non empty double loop structurepamd be series of,
L. Then(p+Q) *r = pxr+qxr.

3. MAIN RESULTS

Let n be an ordinal number and lét be a right zeroed Abelian add-associative right comple-
mentable unital distributive associative non trivial non empty double loop structure. Note that
Polynom-Ringn, L) is non trivial and distributive.

Let 01, 02 be non empty ordinal numbers, lete a right zeroed add-associative right comple-
mentable unital distributive non trivial non empty double loop structure, arfd ket a polynomial
of 01, Polynom-Ringoy,L). The functor Compredyielding a polynomial ob; + 0y, L is defined
by the condition (Def. 2).

(Def. 2) Letb be an element of Bags; + 02). Then there exists an elemdntof Bags; and there
exists an elemert, of Bagsn, and there exists a polynomi@h of 0y, L such thatQ; = P(by)
andb = by + by and(Compres®)(b) = Q1(by).

We now state several propositions:

(9) For all elementd;, c; of Bags; and for all element$,, ¢, of Bags, such thatb; | ¢1
andb, ‘ C holdshy + by | c1 + co.

(10) Letb be a bag ob; + 0z, by be an element of Bags, andb; be an element of Bags.
Supposé | by + by. Then there exists an elemantof Bags; and there exists an elememnt
of Bagso, such that; | by andc; | by andb = ¢; +c,.

(11) For all elementsy, by of Bags; and for all elementsy, b, of Bagso, holdsa; + az <
b1+ by iff a3 < b ora; = by anday < by.

(12) Letby be an element of Bags, b, be an element of Bags, andG be a finite sequence of
elements ofBaggo:1 +02))*. Suppose that

(i) domG = domdivisord,, and

(i)  for every natural number such thati € domdivisord; there exists an elemesf of
Bags0; and there exists a finite sequerigeof elements of Bag®; + 02) such thatr = G
and (divisorsby )i = & and lerF; = lendivisorsh, and for every natural numben such that
m € domF; there exists an elemeaf{ of Bagso, such that(divisorsby)m = af and(Fy)m =
ay +ay.

Then divisorgb; + by) = Flat(G).

(13) For all elementsy, bs, ¢; of Bagso; and for all elementsy, by, ¢, of Bag, such that
ci=b —! a; andcy = by —! as hO|dS(b1 + bz) —/ (a1 + a2) =C1+Co.
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(14) Letby be an element of Bags, by be an element of Bags, andG be a finite sequence of
elements of (Baggo +0))2)*. Suppose that

(i) domG=domdecomp, and

(i) for every natural number such thati € domdecomp; there exist elementa;, b; of
Bag0; and there exists a finite sequertgef elements otBagioﬁroz))z such thafF; = G;
and(decompb, ); = (aj,b}) and lerF; = lendecomb, and for every natural numben such
thatm € domF; there exist elements, b of Bagso, such tha{decompb,)m = (a7,b}) and
(Fi)m= <a/1 + a/llv b,1 + blll>
Then decomfb; + by) = Flat(G).

(15) Letos, 02 be non empty ordinal numbers ahde an Abelian right zeroed add-associative
right complementable unital distributive associative well unital non trivial non empty double

loop structure. Then Polynom-Rifm , Polynom-Rindoy, L)) and Polynom-Rinfp; + 02, L)
are isomorphic.
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