On Polynomials with Coefficients in a Ring of Polynomials

Barbara Dzienis University of Białystok

Summary. The main result of the paper is, that the ring of polynomials with o_1 variables and coefficients in the ring of polynomials with o_2 variables and coefficient in a ring L is isomorphic with the ring with $o_1 + o_2$ variables, and coefficients in L.

MML Identifier: POLYNOM6.

WWW: http://mizar.org/JFM/Vol13/polynom6.html

The articles [21], [27], [23], [13], [28], [8], [9], [20], [1], [22], [14], [24], [17], [11], [5], [10], [26], [12], [6], [2], [3], [4], [25], [7], [19], [15], [29], [18], and [16] provide the notation and terminology for this paper.

1. Preliminaries

In this paper o_1 , o_2 denote ordinal numbers.

Let L_1 , L_2 be non empty double loop structures. Let us note that the predicate L_1 is ring isomorphic to L_2 is reflexive. We introduce L_1 and L_2 are isomorphic as a synonym of L_1 is ring isomorphic to L_2 .

Next we state the proposition

(1) Let *B* be a set. Suppose that for every set *x* holds $x \in B$ iff there exists an ordinal number o such that $x = o_1 + o$ and $o \in o_2$. Then $o_1 + o_2 = o_1 \cup B$.

Let o_1 be an ordinal number and let o_2 be a non empty ordinal number. One can check that $o_1 + o_2$ is non empty and $o_2 + o_1$ is non empty.

We now state the proposition

(2) Let n be an ordinal number and a, b be bags of n. Suppose a < b. Then there exists an ordinal number o such that $o \in n$ and a(o) < b(o) and for every ordinal number l such that $l \in o$ holds a(l) = b(l).

2. ABOUT BAGS

Let o_1 , o_2 be ordinal numbers, let a be an element of Bags o_1 , and let b be an element of Bags o_2 . The functor a + b yields an element of Bags $(o_1 + o_2)$ and is defined as follows:

(Def. 1) For every ordinal number o holds if $o \in o_1$, then (a+b)(o) = a(o) and if $o \in (o_1+o_2) \setminus o_1$, then $(a+b)(o) = b(o-o_1)$.

We now state several propositions:

- (3) For every element a of Bags o_1 and for every element b of Bags o_2 such that $o_2 = \emptyset$ holds a + b = a
- (4) For every element a of Bags o_1 and for every element b of Bags o_2 such that $o_1 = \emptyset$ holds a + b = b.
- (5) For every element b_1 of Bags o_1 and for every element b_2 of Bags o_2 holds $b_1 + b_2 = \text{EmptyBag}(o_1 + o_2)$ iff $b_1 = \text{EmptyBag} o_1$ and $b_2 = \text{EmptyBag} o_2$.
- (6) For every element c of Bags $(o_1 + o_2)$ there exists an element c_1 of Bags o_1 and there exists an element c_2 of Bags o_2 such that $c = c_1 + c_2$.
- (7) For all elements b_1 , c_1 of Bags o_1 and for all elements b_2 , c_2 of Bags o_2 such that $b_1 + b_2 = c_1 + c_2$ holds $b_1 = c_1$ and $b_2 = c_2$.
- (8) Let n be an ordinal number, L be an Abelian add-associative right zeroed right complementable distributive associative non empty double loop structure, and p, q, r be series of n, L. Then (p+q)*r=p*r+q*r.

3. Main Results

Let n be an ordinal number and let L be a right zeroed Abelian add-associative right complementable unital distributive associative non trivial non empty double loop structure. Note that Polynom-Ring(n,L) is non trivial and distributive.

Let o_1 , o_2 be non empty ordinal numbers, let L be a right zeroed add-associative right complementable unital distributive non trivial non empty double loop structure, and let P be a polynomial of o_1 , Polynom-Ring (o_2, L) . The functor Compress P yielding a polynomial of $o_1 + o_2$, L is defined by the condition (Def. 2).

(Def. 2) Let b be an element of Bags $(o_1 + o_2)$. Then there exists an element b_1 of Bags o_1 and there exists an element b_2 of Bags o_2 and there exists a polynomial Q_1 of o_2 , L such that $Q_1 = P(b_1)$ and $b = b_1 + b_2$ and (Compress $P(b) = Q_1(b_2)$.

We now state several propositions:

- (9) For all elements b_1 , c_1 of Bags o_1 and for all elements b_2 , c_2 of Bags o_2 such that $b_1 \mid c_1$ and $b_2 \mid c_2$ holds $b_1 + b_2 \mid c_1 + c_2$.
- (10) Let b be a bag of $o_1 + o_2$, b_1 be an element of Bags o_1 , and b_2 be an element of Bags o_2 . Suppose $b \mid b_1 + b_2$. Then there exists an element c_1 of Bags o_1 and there exists an element c_2 of Bags o_2 such that $c_1 \mid b_1$ and $c_2 \mid b_2$ and $b = c_1 + c_2$.
- (11) For all elements a_1 , b_1 of Bags o_1 and for all elements a_2 , b_2 of Bags o_2 holds $a_1 + a_2 < b_1 + b_2$ iff $a_1 < b_1$ or $a_1 = b_1$ and $a_2 < b_2$.
- (12) Let b_1 be an element of Bags o_1 , b_2 be an element of Bags o_2 , and G be a finite sequence of elements of $(Bags(o_1 + o_2))^*$. Suppose that
 - (i) $dom G = dom divisors b_1$, and
- (ii) for every natural number i such that $i \in \text{dom divisors } b_1$ there exists an element a'_1 of Bags o_1 and there exists a finite sequence F_1 of elements of Bags $(o_1 + o_2)$ such that $F_1 = G_i$ and $(\text{divisors } b_1)_i = a'_1$ and $\text{len } F_1 = \text{len divisors } b_2$ and for every natural number m such that $m \in \text{dom } F_1$ there exists an element a''_1 of Bags o_2 such that $(\text{divisors } b_2)_m = a''_1$ and $(F_1)_m = a'_1 + a''_1$.

Then divisors $(b_1 + b_2) = \text{Flat}(G)$.

(13) For all elements a_1 , b_1 , c_1 of Bags o_1 and for all elements a_2 , b_2 , c_2 of Bags o_2 such that $c_1 = b_1 - a_1$ and $c_2 = b_2 - a_2$ holds $(b_1 + b_2) - (a_1 + a_2) = c_1 + c_2$.

- (14) Let b_1 be an element of Bags o_1 , b_2 be an element of Bags o_2 , and G be a finite sequence of elements of $((Bags(o_1 + o_2))^2)^*$. Suppose that
 - (i) $\operatorname{dom} G = \operatorname{dom} \operatorname{decomp} b_1$, and
 - (ii) for every natural number i such that $i \in \text{domdecomp } b_1$ there exist elements a'_1 , b'_1 of Bags o_1 and there exists a finite sequence F_1 of elements of $(\text{Bags}(o_1 + o_2))^2$ such that $F_1 = G_i$ and $(\text{decomp } b_1)_i = \langle a'_1, b'_1 \rangle$ and $\text{len } F_1 = \text{len decomp } b_2$ and for every natural number m such that $m \in \text{dom } F_1$ there exist elements a''_1 , b''_1 of Bags o_2 such that $(\text{decomp } b_2)_m = \langle a''_1, b''_1 \rangle$ and $(F_1)_m = \langle a'_1 + a''_1, b'_1 + b''_1 \rangle$.

Then $decomp(b_1 + b_2) = Flat(G)$.

(15) Let o_1 , o_2 be non empty ordinal numbers and L be an Abelian right zeroed add-associative right complementable unital distributive associative well unital non trivial non empty double loop structure. Then Polynom-Ring $(o_1, \text{Polynom-Ring}(o_2, L))$ and Polynom-Ring $(o_1 + o_2, L)$ are isomorphic.

REFERENCES

- Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/nat_1.html.
- [2] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1.html.
- [3] Grzegorz Bancerek. Sequences of ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinal2.html.
- [4] Grzegorz Bancerek. Ordinal arithmetics. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/ordinal3.html.
- [5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/finseq_1.html.
- [6] Grzegorz Bancerek and Piotr Rudnicki. On defining functions on trees. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/dtconstr.html.
- [7] Józef Białas. Group and field definitions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/realsetl. html.
- [8] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct 1.html.
- [9] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [10] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_2.html.
- [11] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finset_1.html.
- [12] Jarosław Kotowicz. Monotone real sequences. Subsequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/seqm_3.html.
- [13] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/vectsp_1.html.
- [14] Beata Madras. Product of family of universal algebras. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/pralg_1.html.
- [15] Robert Milewski. Associated matrix of linear map. Journal of Formalized Mathematics, 7, 1995. http://mizar.org/JFM/Vol7/matrlin.html.
- [16] Robert Milewski. The ring of polynomials. Journal of Formalized Mathematics, 12, 2000. http://mizar.org/JFM/Vol12/polynom3.html.
- [17] Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/vectsp_2.html.
- [18] Piotr Rudnicki and Andrzej Trybulec. Multivariate polynomials with arbitrary number of variables. *Journal of Formalized Mathematics*, 11, 1999. http://mizar.org/JFM/Voll1/polynoml.html.
- [19] Christoph Schwarzweller. The field of quotients over an integral domain. Journal of Formalized Mathematics, 10, 1998. http://mizar.org/JFM/Vol10/quofield.html.
- [20] Andrzej Trybulec. Binary operations applied to functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funcop_1.html.

- [21] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [22] Andrzej Trybulec. Many-sorted sets. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/pboole.html.
- [23] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [24] Wojciech A. Trybulec. Vectors in real linear space. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/rlvect_1.html.
- [25] Wojciech A. Trybulec. Groups. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/group_1.html.
- [26] Wojciech A. Trybulec. Pigeon hole principle. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/finseq_4.html.
- $[27] \ \ Zinaida\ Trybulec.\ Properties\ of\ subsets.\ Journal\ of\ Formalized\ Mathematics, 1, 1989.\ \verb|http://mizar.org/JFM/Vol1/subset_1.html|.$
- [28] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relat_1.html.
- [29] Katarzyna Zawadzka. Sum and product of finite sequences of elements of a field. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/fvsum_1.html.

Received August 10, 2001

Published January 2, 2004