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Summary. The goal of this article is to define multivariate polynomials in arbitrary
number of indeterminates and then to prove that they constitute a ring (over appropriate struc-
ture of coefficients).

The introductory section includes quite a number of auxiliary lemmas related to many dif-
ferent parts of the MML. The second section characterizes the sequence flattening operation,
introduced in[[9], but so far lacking theorems about its fundamental properties.

We first define formal power series in arbitrary number of variables. The auxiliary concept
on which the construction of formal power series is based is the notion of a bag. A bag of a
setX is a natural function oX which is zero almost everywhere. The elementX @ilay the
role of formal variables and a bag gives their exponents thus forming a power product. Series
are defined for an ordered set of variables (we use ordinal numbers). A seoieariables
over a structurés is a function assigning an element of the carrieSdtoefficient) to each
bag ofo.

We define the operations of addition, complement and multiplication for formal power
series and prove their properties which depend on assumed properties of the structure from
which the coefficients are taken. (We would like to note that proving associativity of multipli-
cation turned out to be technically complicated.)

Polynomial is defined as a formal power series with finite number of non zero coefficients.
In conclusion, the ring of polynomials is defined.

MML Identifier: POLYNOML.

WWW: http://mizar.org/JEM/Volll/polynoml.html

The articles([3B],[[1/71,[143],[136],[144],145]/146]/ [14]/ [20] [ 1371 [32]. [3].[35]. [16]. [15]. [12],
[13], [19], [2], [11], [3€], [38], [42], (€], [18], [4], [24], [1], [S], [41], [27], [40], [28], [7], [22], [6],
[23], [31], [210], [34], [Q], I34], [29], [26], [25], [21], and([4]7] provide the notation and terminology
for this paper.

1. BAsics

One can prove the following propositions:
(1) For all natural numberis j holds (i, j) =i-j.

(2) LetX be a setAbe a non empty sef be a binary operation oy, f be a function fromX
into A, andx be an element of. Then donfF°(f,x)) = X.

(3) For all natural numbers, b, choldsa—'b—'c=a—' (b+c).

1This work has been supported by NSERC Grant OGP9207 and NATO CRG 951368.
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(4) For every seX and for every binary relatioR such that fieldR C X holdsR is a binary
relation onX.

(5) LetK be a non empty loop structure amd, p2 be finite sequences of elements of the
carrier ofK. If domp; = dompy, then dongp; + p2) = domp;.

(6) For every functiorf and for all setx, y holds rnd f +- (x,y)) C rngf U {y}.

Let A, B be sets, leff be a function fromA into B, let x be a set, and let be an element 0B.
Thenf +-(x,y) is a function fromA into B.

Let X be a set, lef be a many sorted set indexed Xyand letx, y be sets. Theti +- (x,y) is a
many sorted set indexed B

We now state the proposition

(7) For every one-to-one functiohholds (f quaset = rngf.

Let A be a non empty set, |€t, G be binary operations oA, and letz, u be elements oA.
Observe thatA, F, G,z u) is non empty.

Let A be a set, leX be a set, leD be a non empty set of finite sequenceé\plet p be a partial
function fromX to D, and leti be a set. Thep; is an element obD.

Let X be a set and IeB be a 1-sorted structure. A function froxhinto Sis a function fromxX
into the carrier ofS,

Let X be a set. Observe that there exists an ord&which is linear-order and well-ordering.

We now state two propositions:

(8) LetX be a non empty seA be a non empty finite subset ¥f R be an order ifX, andx
be an element oX. Suppose € A andRlinearly ordersA and for every elementof X such
thaty € Aholds(x, y) € R. Then(SgmXR,A))1 = x.

(9) LetX be a non empty seA be a non empty finite subset ¥f R be an order inX, andx
be an element oX. Suppose& € A andR linearly ordersA and for every elementof X such
thaty € Aholds(y, x) € R Then(SgmX(R, A))jensgmxra) = X-

Let X be a non empty set, létbe a non empty finite subset Xf and letR be linear-order order
in X. Note that SgmXR, A) is non empty and one-to-one.

One can check thdtis finite sequence yielding.

Let us note that there exists a finite sequence which is finite sequence yielding.

Let F, G be finite sequence yielding finite sequences. TReNG is a finite sequence yielding
finite sequence.

Let i be a natural number and létbe a finite sequence. Note that> f is finite sequence
yielding.

Let F be a finite sequence yielding finite sequence and leg a set. Note thet(x) is finite
sequence-like.

Let F be a finite sequence. Observe thats finite sequence-like.

Let us observe that there exists a finite sequence which is cardinal yielding.

We now state the proposition

(10) Letf be a function. Therf is cardinal yielding if and only if for every segtsuch that
y € rngf holdsy is a cardinal number.

LetF, G be cardinal yielding finite sequences. One can checkitha is cardinal yielding.

Let us mention that every finite sequence of element$ isfcardinal yielding.

One can check that there exists a finite sequence of elemeNtwhbich is cardinal yielding.

Let D be a set and IgE be a finite sequence of elementsf. ThenF is a cardinal yielding
finite sequence of elements Kf

Let F be a finite sequence of elementshdfind leti be a natural number. Observe tigt is
cardinal yielding.

We now state the proposition
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(11) For every functior and for every seX holdsF | :ﬁx.

Let F be an empty function. One can verify tHatis empty.
The following propositions are true:

(12) For every sep holds (p) = (P).

(13) For all finite sequencds, G holdsF ~ G = F~G.

Let X be a set. Note thai is finite sequence yielding.
Let f be a finite sequence. One can verify thit is finite sequence yielding.
We now state the proposition

(14) Letf be afunction. Therf is finite sequence yielding if and only if for every sesuch
thaty € rngf holdsy is a finite sequence.

Let F, G be finite sequence yielding finite sequences. ObserveRhak is finite sequence
yielding.
We now state four propositions:

(15) LetL be a non empty loop structure ariel be a finite sequence of elements of
(the carrier ofL)*. Then donf F = domF.

(16) LetL be a non empty loop structure arfel be a finite sequence of elements of
(the carrier Oﬂ-)*' ThenZ(s(the carrier ofL)*) = 8(the carrier ofL)-

(17) For every non empty loop structureand for every elemerp of (the carrier ofL)* holds
(3p)=3(p)

(18) LetL be a non empty loop structure arél G be finite sequences of elements of
(the carrier ofL)*. Theny(F~G) = (3F)" 3 G.

Let L be a non empty groupoid, Igtbe a finite sequence of elements of the carriel,odind
leta be an element df. Thena- pis a finite sequence of elements of the carriek @ind it can be
characterized by the condition:

(Def. ZE] dom(a- p) = domp and for every seitsuch thai € domp holds(a- p)i =a- p;.

LetL be a non empty groupoid, Igtbe a finite sequence of elements of the carridr,cfnd let
abe an element df. The functorp- ayields a finite sequence of elements of the carridr ahd is
defined by:

(Def. 3) domp-a) = domp and for every seitsuch thai € domp holds(p-a); = pi - a.

Next we state several propositions:
(19) For every non empty groupoldand for every elemerd of L holdsa- €ne carrier ofL) =
&(the carrier ofL)-

(20) For every non empty groupoldand for every elemerd of L holds€gpe carrier o) @ =
E(the carrier ofL)-

(21) For every non empty groupoldand for all elements, b of L holdsa- (b) = (a-b).
(22) For every non empty groupoldand for all elements, b of L holds(b)-a= (b-a).

(23) LetL be a non empty groupoidi be an element ok, and p, g be finite sequences of
elements of the carrier &f. Thena-(p~q) = (a-p)~ (a-Q).

1 The definition (Def. 1) has been removed.
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(24) LetL be a non empty groupoid be an element ok, andp, g be finite sequences of
elements of the carrier &f. Then(p~q)-a=(p-a) "~ (q-a).

Let us note that every non empty multiplicative loop with zero structure which is non degener-
ated is also non trivial.

Let us note that there exists a non empty strict multiplicative loop with zero structure which is
unital.

Let us note that there exists a non empty double loop structure which is strict, Abelian, add-
associative, right zeroed, right complementable, associative, commutative, distributive, field-like,
unital, and non trivial.

The following three propositions are true:

(27E] LetL be an add-associative right zeroed right complementable unital right distributive non
empty double loop structure. If G= 1, , thenL is trivial.

(28) LetL be an add-associative right zeroed right complementable unital distributive non empty
double loop structurea be an element of, and p be a finite sequence of elements of the
carrier ofL. Theny (a-p)=a-3 p.

(29) LetL be an add-associative right zeroed right complementable unital distributive non empty
double loop structurea be an element of, and p be a finite sequence of elements of the
carrier ofL. Theny (p-a)=3 p-a.

2. SEQUENCEFLATTENING

Let D be a set and I be an empty finite sequence of element®oéf Observe that FI&F) is
empty.
We now state several propositions:

(30) For every seb and for every finite sequenéeof elements oD* holds lenFlatF ) = Zf-

(31) LetD, E be setsF be a finite sequence of elementsivf, andG be a finite sequence of
elements oE*. If F = G, then lenFlatF) = lenFla{G).

(832) LetD be a setF be a finite sequence of elements@f, andk be a set. Suppodec
domFlatF). Then there exist natural numberg such thai € domF andj € domF(i) and

k=S FI(i—'1) +jandF(i)(j) = Flat(F)(k).

(33) LetD be a set,F be a finite sequence of elements Bf, andi, j be natural num-
bers. Ifi € domF and j € domF(i), theny F[(i—'1) + j € domFlatF) andF(i)(j) =
FlatF)(3 FI(i—"1) +]).

(34) LetL be an add-associative right zeroed right complementable non empty loop structure
andF be a finite sequence of elements of (the carridr)éf Theny Flat(F) =S S F.

(35) LetX,Y be non empty setd, be a finite sequence of elementsXf, andv be a function
from X into Y. Then(domf — v) o f is a finite sequence of elementsYtf.

(836) LetX,Y be non empty setsf, be a finite sequence of elementsX6f, andv be a func-
tion from X into Y. Then there exists a finite sequen€eof elements ofy* such that
F = (domf —— v)o f andv-Flat(f) = Flat(F).

2 The propositions (25) and (26) have been removed.
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3. FUNCTIONSYIELDING NATURAL NUMBERS

Let us note thad is natural-yielding.

Let us note that there exists a function which is natural-yielding.

Let f be a natural-yielding function and lebe a set. Therfi(x) is a natural number.

Let f be a natural-yielding function, letbe a set, and let be a natural number. One can verify
that f +- (x,n) is natural-yielding.

Let X be a set. One can verify that every function frehinto N is natural-yielding.

Let X be a set. One can verify that there exists a many sorted set indexewnbich is natural-
yielding.

Let X be a set and ldb;, by be natural-yielding many sorted sets indexedxyThe functor
by + by yielding a many sorted set indexed Kyis defined as follows:

(Def. 5 For every sek holds(by + by) (X) = b1 (X) + ba(x).

Let us observe that the functbg + by is commutative. The functds; —' b, yields a many sorted
set indexed by and is defined as follows:

(Def. 6) For every setholds(by —'by)(x) = by(X) —" ba(X).
One can prove the following propositions:

(37) LetX be a setant, by, by be natural-yielding many sorted sets indexedbyf for every
setx such thaik € X holdsb(x) = by (x) + bz(x), thenb = by + by.

(38) LetX be a setant, by, by be natural-yielding many sorted sets indexedbyf for every
setx such tha € X holdsb(x) = b1(x) —" by(x), thenb = by —' by.

Let X be a set and ldty, b, be natural-yielding many sorted sets indexedXbyObserve that
b1 + by is natural-yielding andb —' b, is natural-yielding.
The following two propositions are true:

(39) For every seX and for all natural-yielding many sorted séfs b, bz indexed byX holds
(by +by) + bz = by + (by + bs).

(40) For every seK and for all natural-yielding many sorted sétsc, d indexed byX holds
b—'c—'d=b-'(c+d).

4. THE SUPPORT OF AFUNCTION

Let f be a function. The functor suppdris defined by:
(Def. 7) For every set holdsx € supportf iff f(x) #£ 0.

The following proposition is true
(41) For every functiorf holds supporf C domf.

Let f be a function. We say thdtis finite-support if and only if:
(Def. 8) support is finite.

We introducef has finite-support as a synonym ffs finite-support.
Let us observe thdt s finite-support.
Let us mention that every function which is finite is also finite-support.
Let us note that there exists a function which is natural-yielding, finite-support, and non empty.
Let f be a finite-support function. Note that suppbis finite.
Let X be a set. One can check that there exists a function Xonto N which is finite-support.

3 The definition (Def. 4) has been removed.
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Let f be a finite-support function and Igty be sets. One can verify thét+- (x,y) is finite-
support.

Let X be a set. One can check that there exists a many sorted set indeXeshigh is natural-
yielding and finite-support.

We now state two propositions:

(42) For every seK and for all natural-yielding many sorted séis b, indexed byX holds
supportb; + by) = supporb; U supporbs.

(43) For every seK and for all natural-yielding many sorted séigs by, indexed byX holds
supportb; —'by) C supporb;.

Let X be a non empty set, I&be a zero structure, and létbe a function fromX into S. The
functor Supporf yielding a subset oX is defined by:

(Def. 9) For every elementof X holdsx € Supportf iff f(x) # Os.

Let X be a non empty set, I&be a zero structure, and Iptbe a function fromX into S. We
say thatp is finite-Support if and only if:

(Def. 10) Supporpis finite.

We introducep has finite-Support as a synonympfs finite-Support.

5. BaGs

Let X be a set. A bag oX is a natural-yielding finite-support many sorted set indexedl by
Let X be a finite set. Note that every many sorted set indexed isyfinite-support.
Let X be a set and lelh;, b, be bags ofX. One can verify thab; + b is finite-support and
b; —' by is finite-support.
One can prove the following proposition

(44) For every seX holdsX — 0 is a bag ofX.

Let n be an ordinal number and lpf q be bags oh. The predicatg < qis defined by:

(Def. 11) There exists an ordinal numbesuch thap(k) < q(k) and for every ordinal numbéisuch
thatl € k holdsp(l) = q(l).

Let us note that the predicape< g is antisymmetric.
Next we state the proposition

(45) For every ordinal number and for all bag®, g, r of n such thatp < g andq < r holds
p<r.

Let n be an ordinal number and Ipt q be bags oh. The predicate < qis defined by:
(Def. 12) p<qorp=aq.

Let us note that the predicage< q is reflexive.
One can prove the following four propositions:

(46) For every ordinal numberand for all bags, g, r of n such thatp < gandq < r holds
p<r.

(47) For every ordinal number and for all bag9, g, r of n such thatp < g andq < r holds
p<r.

(48) For every ordinal numberand for all bags, g, r of n such thatp < g andq < r holds
p<r.

(49) For every ordinal numberand for all bag®, qof nholdsp<gorqg< p.
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Let X be a set and led, b be bags oK. The predicate | b is defined by:
(Def. 13) For every sét holdsd(k) < b(k).

Let us note that the predicatd b is reflexive.
Next we state several propositions:

(50) For every seh and for all bagd, b of n such that for every sét such thatk € n holds
d(k) < b(k) holdsd | b.

(51) For every ordinal numberand for all bags;, b, of n such thab; | by holds (b, —" by) +
by = by.

(52) For every seX and for all bagds, b, of X holds(by +by) —' by = by.
(53) For every ordinal numberand for all bagsl, b of n such thad | b holdsd < b.
(54) For every set and for all bagd, by, by of nsuch thab = by + b, holdsb; | b.

Let X be a set. The functor Baysis defined by:
(Def. 14) For every set holdsx € BagsX iff xis a bag ofX.

Let X be a set. Then Bagsis a subset of Bags.
The following proposition is true

(55) Bag¥®={0}.

Let X be a set. Note that Bagsis non empty.

Let X be a set and leB be a non empty subset of BaysWe see that the element Bfis a bag
of X.

Letn be a set, let. be a non empty 1-sorted structure, pebe a function from Bagsinto L,
and letx be a bag oh. Thenp(x) is an element of.

Let X be a set. The functor EmptyBXgyielding an element of Bagéis defined as follows:

(Def. 15) EmptyBagX = X — 0.
We now state several propositions:
(56) For all set, x holds(EmptyBagX)(x) = 0.
(57) For every seX and for every badp of X holdsb+ EmptyBagX = b.
(58) For every seX and for every bady of X holdsb —" EmptyBagx = b.
(59) For every seX and for every bag of X holds EmptyBag —' b = EmptyBagX.
(60) For every seX and for every bady of X holdsb —' b = EmptyBagX.

(61) For every seh and for all bags;, b, of n such thaty; | by, andb, —' by = EmptyBag
hO|dSb2 = bl.

(62) For every set and for every bag of n such thab | EmptyBagn holds EmptyBag = b.
(63) For every set and for every ba@ of n holds EmptyBag | b.

(64) For every ordinal numberand for every bag of n holds EmptyBag < b.

Let n be an ordinal number. The functor BagOrdeields an order in Bagsand is defined as
follows:

(Def. 16) For all bag®, q of nholds(p, g) € BagOrdeniff p<aq.
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Let n be an ordinal number. Note that BagOrdés linear-order.
Let X be a set and let be a function fronX into N. The functor NatMinof yields a subset of
NX and is defined by the condition (Def. 17).

(Def. 17) Letg be a natural-yielding many sorted set indexedbyheng € NatMinor f if and only
if for every setx such thak € X holdsg(x) < f(x).

The following proposition is true
(65) For every seX and for every functiorf from X into N holds f € NatMinorf.

Let X be a set and let be a function fronX into N. Observe that NatMindf is non empty and
functional.

Let X be a set and let be a function fronmX into N. Note that every element of NatMinbiis
natural-yielding.

Next we state the proposition

(66) For every seX and for every finite-support functiohfrom X into N holds NatMinorf C
BagsX.

Let X be a set and lef be a finite-support function frond into N. Then support is an element
of FinX.
One can prove the following proposition

(67) For every non empty set and for every finite-support functioh from X into N holds
NatMinorf = -n- ¥ supportt (+n)°(f,1).
Let X be a set and lef be a finite-support function froX into N. Note that NatMinof is
finite.
Let n be an ordinal number and Ibtbe a bag ofh. The functor divisorb yielding a finite
sequence of elements of Bayis defined as follows:

(Def. 18) There exists a non empty finite subsBt of Bagsn such that divisorb =
SgmX(BagOrden, S) and for every bag of nholdsp € Siff p|b.

Let n be an ordinal number and lbtbe a bag ofh. Note that divisorb is nhon empty and
one-to-one.
One can prove the following propositions:

(68) Letnbe an ordinal numberbe a natural number, atbe a bag oh. If i € domdivisord,
then(divisorsh); qua element of Bags | b.

(69) For every ordinal numberand for every bag of n holds(divisorsb); = EmptyBagn and
(divisorsb)endivisorp = b.

(70) Letnbe an ordinal numbetr,be a natural number, arxl by, b, be bags oh. If i > 1 and
i < lendivisordy, then(divisorsb); £ EmptyBag and(divisorsb); # b.

(71) For every ordinal numberholds divisors EmptyBag= (EmptyBagn).

Letn be an ordinal number and lebe a bag ofi. The functor decompyields a finite sequence
of elements ofBagsn)? and is defined by:

(Def. 19) domdecomp = domdivisors and for every natural numbérand for every bag of n
such thai € domdecomp and p = (divisorsb); holds(decomb); = (p,b—' p).

One can prove the following three propositions:

(72) Letnbe an ordinal numberpe a natural number, aticbe a bag of. If i € domdecomp,
then there exist bags, b, of n such tha{decompb); = (by,by) andb = by + by.
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(73) Letn be an ordinal number arg by, b, be bags oh. If b= by + by, then there exists a
natural number such thai € domdecomp and(decomb); = (by, by).

(74) Letn be an ordinal numbei, be a natural number, arg by, b, be bags oh. If i
domdecomp and(decomg); = (b1, by), thenb; = (divisorsb);.

Let n be an ordinal number and létbe a bag ofn. Observe that deconfpis non empty,
one-to-one, and finite sequence yielding.

Let n be an ordinal number and lbtbe an element of Bags Observe that decontpis non
empty, one-to-one, and finite sequence yielding.

Next we state four propositions:

(75) For every ordinal numberand for every ba@ of n holds(decomb); = (EmptyBag, b)
and(decomrb)len decomip = <ba EmptyBag1>.

(76) Letn be an ordinal numbet,be a natural number, arixl by, b, be bags oh. If i > 1 and
i < lendecom and(decomm); = (b1, by), thenb; # EmptyBagh andb, # EmptyBagn.

(77) For every ordinal numberholds decomp EmptyBag= ((EmptyBag, EmptyBagn)).
(78) Letn be an ordinal numbeh be a bag oh, and f, g be finite sequences of elements of
((Bagsn)®)*. Suppose that
(i) domf =domdecomp,
(i) domg=domdecomp,

(i)  for every natural numbek such thak € domf holdsf (k) = (decomg((decomb)i)1 qua
element of Bags)) ~ (lendecomg((decomb)i)1 quaelement of Bags) — (((decommb)k)2)),
and

(iv) forevery natural numbéesuch thak € domg holdsg(k) = (lendecomp((decomb))2 qua
element of Bags) — (((decompb)k)1)) ~ decomg((decomb)k)2 qua element of Bags).

Then there exists a permutatiprof domFlat f) such that Flgig) = Flat(f) - p.

6. FORMAL POWER SERIES

Let X be a set and leSbe a 1-sorted structure. A seriesXfSis a function from BagX into S.
Let n be a set, let. be a non empty loop structure, and fgtq be series ofy, L. The functor
p+ qyielding a series of, L is defined as follows:

(Def. leﬂ For every bag of n holds(p+q)(x) = p(x) + q(x).

We now state the proposition

(79) Letnbe a setl be a right zeroed non empty loop structure, @nd be series o, L. Then
Supportp+q) C SupporipU Supporg.

Let n be a set, let. be an Abelian right zeroed non empty loop structure, ang,lgtbe series
of n, L. Let us observe that the functpr- g is commutative.
One can prove the following proposition

(80) Letn be a setl be an add-associative right zeroed non empty double loop structure, and
p, g, r be series of, L. Then(p+q)+r = p+(q+r).

Let n be a set, let. be an add-associative right zeroed right complementable non empty loop
structure, and lep be a series oh, L. The functor—p yields a series of, L and is defined as
follows:

(Def. 22) For every bag of n holds(—p)(x) = —p(X).

4 The definition (Def. 20) has been removed.
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Let us observe that the functerp is involutive.

Let n be a set, let. be an add-associative right zeroed right complementable non empty loop
structure, and lep, q be series oh, L. The functorp— q yielding a series of, L is defined as
follows:

(Def. 23) p—g=p+—q.
Letn be a set and lésbe a non empty zero structure. The functgB@ields a series of, Sand
is defined as follows:
(Def. 24) @S=Bags1+— Os.

We now state two propositions:

(81) For every seh and for every non empty zero structuseand for every badp of n holds
(0nS)(b) = 0Os.

(82) For every seh and for every right zeroed non empty loop structurand for every series
pofn, L holdsp+0nL = p.

Letnbe a set and ldt be a unital non empty multiplicative loop with zero structure. The functor
1.(n,L) yields a series ofi, L and is defined by:

(Def. 25) 1(n,L)=0,L+- (EmptyBag,1,).
The following propositions are true:

(83) Letnbe a setl be an add-associative right zeroed right complementable non empty loop
structure, ang be a series af, L. Thenp— p=0xL.

(84) Letn be a set and be a unital non empty multiplicative loop with zero structure. Then
(1-(n,L))(EmptyBagn) = 1, and for every bag of n such thatb # EmptyBag holds
(1-(n,L))(b) =0.

Let n be an ordinal number, l&t be an add-associative right complementable right zeroed non
empty double loop structure, and letq be series oh, L. The functorp* q yielding a series of,
L is defined by the condition (Def. 26).

(Def. 26) Letb be a bag oh. Then there exists a finite sequerscef elements of the carrier df
such that

i) (pxa)(b)=73s,
(i) lens=lendecomp, and

(i)  for every natural numbek such thatk € doms there exist bag#®;, by of n such that
(decompb)i = (by, b2) andsc = p(b1) - q(by).

One can prove the following two propositions:

(85) Letn be an ordinal numbet, be an Abelian add-associative right zeroed right comple-
mentable distributive associative non empty double loop structurepamd be series of,
L. Thenpx(g+r) = pxq+ p=*r.

(86) Letn be an ordinal numbet, be an Abelian add-associative right zeroed right comple-
mentable unital distributive associative non empty double loop structurey,apd be series
of n,L. Then(p*q)*r = p=(qx*r).

Let n be an ordinal number, ldt be an Abelian add-associative right zeroed right comple-
mentable commutative non empty double loop structure, ang,letbe series oh, L. Let us
observe that the functqr= q is commutative.

One can prove the following propositions:
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(87) Letn be an ordinal numbet, be an add-associative right complementable right zeroed
unital distributive non empty double loop structure, gnide a series afi, L. Thenp«0,L =
OnlL.

(88) Letn be an ordinal numbet, be an add-associative right complementable right zeroed
distributive unital non trivial non empty double loop structure, gk a series af, L. Then

px1_(n,L)=p.

(89) Letn be an ordinal numbet, be an add-associative right complementable right zeroed
distributive unital non trivial non empty double loop structure, arxk a series ofi, L. Then

1(nL)yxp=p.
7. POLYNOMIALS

Letn be a set and lesbe a non empty zero structure. Note that there exists a seneSseofhich is
finite-Support.

Let n be an ordinal number and I8tbe a non empty zero structure. A polynomialmfSis a
finite-Support series af, S.

Let n be an ordinal number, ldt be a right zeroed non empty loop structure, andpleq be
polynomials ofn, L. Note thatp+ q s finite-Support.

Let n be an ordinal number, &t be an add-associative right zeroed right complementable non
empty loop structure, and Igtbe a polynomial of, L. One can verify that p is finite-Support.

Let n be a natural number, |ét be an add-associative right zeroed right complementable non
empty loop structure, and Igt g be polynomials oh, L. Observe thap — q is finite-Support.

Let n be an ordinal number and I&be a non empty zero structure. Note tha8es finite-
Support.

Let n be an ordinal number and Ietbe an add-associative right zeroed right complementable
unital right distributive non trivial non empty double loop structure. One can verify tlfatll) is
finite-Support.

Letn be an ordinal number, l&tbe an add-associative right complementable right zeroed unital
distributive non empty double loop structure, andgdet] be polynomials ofi, L. Note thatpxqis
finite-Support.

8. THE RING OF POLYNOMIALS

Let n be an ordinal number and letbe a right zeroed add-associative right complementable unital
distributive non trivial non empty double loop structure. The functor Polynom-Rihg yields a
strict non empty double loop structure and is defined by the conditions (Def. 27).

(Def. 27)()) For every set holdsx € the carrier of Polynom-Ring, L) iff xis a polynomial ofn, L,

(i) for all elementsx, y of Polynom-Ringn, L) and for all polynomials, q of n, L such that
x = pandy = g holdsx+y= p+q,

(iiiy  for all elementsx, y of Polynom-Ringn, L) and for all polynomial9, q of n, L such that
x = pandy =qholdsx-y= pxq,

(iv) OPolynom-Ring(n.L) =0pL, and
(V) 1Po|yn0m-Ring(n,L) = 1—(”7 L)~

Let n be an ordinal number and Ietbe an Abelian right zeroed add-associative right comple-
mentable unital distributive non trivial non empty double loop structure. Note that Polynon(rRing
is Abelian.

Let n be an ordinal number and letbe an add-associative right zeroed right complementable
unital distributive non trivial non empty double loop structure. Observe that Polynon{iRings
add-associative.

Let n be an ordinal number and letbe a right zeroed add-associative right complementable
unital distributive non trivial non empty double loop structure. Note that Polynom{Rihgy is
right zeroed.
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Let n be an ordinal number and letbe a right complementable right zeroed add-associative
unital distributive non trivial non empty double loop structure. Note that Polynom{Rihgy is
right complementable.

Let n be an ordinal number and letbe an Abelian add-associative right zeroed right com-
plementable commutative unital distributive non trivial non empty double loop structure. One can
verify that Polynom-Ringn, L) is commutative.

Let n be an ordinal number and letbe an Abelian add-associative right zeroed right comple-
mentable unital distributive associative non trivial non empty double loop structure. One can check
that Polynom-Rinén, L) is associative.

Let n be an ordinal number and letbe a right zeroed Abelian add-associative right comple-
mentable unital distributive associative non trivial non empty double loop structure. One can verify
that Polynom-Rin¢n, L) is unital and right distributive.
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