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Summary. The goal of this article is to define multivariate polynomials in arbitrary
number of indeterminates and then to prove that they constitute a ring (over appropriate struc-
ture of coefficients).

The introductory section includes quite a number of auxiliary lemmas related to many dif-
ferent parts of the MML. The second section characterizes the sequence flattening operation,
introduced in [9], but so far lacking theorems about its fundamental properties.

We first define formal power series in arbitrary number of variables. The auxiliary concept
on which the construction of formal power series is based is the notion of a bag. A bag of a
setX is a natural function onX which is zero almost everywhere. The elements ofX play the
role of formal variables and a bag gives their exponents thus forming a power product. Series
are defined for an ordered set of variables (we use ordinal numbers). A series ino variables
over a structureS is a function assigning an element of the carrier ofS (coefficient) to each
bag ofo.

We define the operations of addition, complement and multiplication for formal power
series and prove their properties which depend on assumed properties of the structure from
which the coefficients are taken. (We would like to note that proving associativity of multipli-
cation turned out to be technically complicated.)

Polynomial is defined as a formal power series with finite number of non zero coefficients.
In conclusion, the ring of polynomials is defined.

MML Identifier: POLYNOM1.

WWW: http://mizar.org/JFM/Vol11/polynom1.html

The articles [33], [17], [43], [36], [44], [45], [46], [14], [20], [37], [32], [3], [35], [16], [15], [12],
[13], [19], [2], [11], [39], [38], [42], [8], [18], [4], [24], [1], [5], [41], [27], [40], [28], [7], [22], [6],
[23], [31], [10], [34], [9], [30], [29], [26], [25], [21], and [47] provide the notation and terminology
for this paper.

1. BASICS

One can prove the following propositions:

(1) For all natural numbersi, j holds·N(i, j) = i · j.

(2) LetX be a set,A be a non empty set,F be a binary operation onA, f be a function fromX
into A, andx be an element ofA. Then dom(F◦( f ,x)) = X.

(3) For all natural numbersa, b, c holdsa−′ b−′ c = a−′ (b+c).

1This work has been supported by NSERC Grant OGP9207 and NATO CRG 951368.
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(4) For every setX and for every binary relationR such that fieldR⊆ X holdsR is a binary
relation onX.

(5) Let K be a non empty loop structure andp1, p2 be finite sequences of elements of the
carrier ofK. If domp1 = domp2, then dom(p1 + p2) = domp1.

(6) For every functionf and for all setsx, y holds rng( f +· (x,y))⊆ rng f ∪{y}.

Let A, B be sets, letf be a function fromA into B, let x be a set, and lety be an element ofB.
Then f +· (x,y) is a function fromA into B.

Let X be a set, letf be a many sorted set indexed byX, and letx, y be sets. Thenf +· (x,y) is a
many sorted set indexed byX.

We now state the proposition

(7) For every one-to-one functionf holds ( f qua set) = rng f .

Let A be a non empty set, letF , G be binary operations onA, and letz, u be elements ofA.
Observe that〈A,F,G,z,u〉 is non empty.

Let A be a set, letX be a set, letD be a non empty set of finite sequences ofA, let p be a partial
function fromX to D, and leti be a set. Thenpi is an element ofD.

Let X be a set and letSbe a 1-sorted structure. A function fromX into S is a function fromX
into the carrier ofS.

Let X be a set. Observe that there exists an order inX which is linear-order and well-ordering.
We now state two propositions:

(8) Let X be a non empty set,A be a non empty finite subset ofX, R be an order inX, andx
be an element ofX. Supposex∈ A andR linearly ordersA and for every elementy of X such
thaty∈ A holds〈〈x, y〉〉 ∈ R. Then(SgmX(R,A))1 = x.

(9) Let X be a non empty set,A be a non empty finite subset ofX, R be an order inX, andx
be an element ofX. Supposex∈ A andR linearly ordersA and for every elementy of X such
thaty∈ A holds〈〈y, x〉〉 ∈ R. Then(SgmX(R,A))lenSgmX(R,A) = x.

Let X be a non empty set, letA be a non empty finite subset ofX, and letRbe linear-order order
in X. Note that SgmX(R,A) is non empty and one-to-one.

One can check that/0 is finite sequence yielding.
Let us note that there exists a finite sequence which is finite sequence yielding.
Let F , G be finite sequence yielding finite sequences. ThenF _ G is a finite sequence yielding

finite sequence.
Let i be a natural number and letf be a finite sequence. Note thati 7→ f is finite sequence

yielding.
Let F be a finite sequence yielding finite sequence and letx be a set. Note thatF(x) is finite

sequence-like.
Let F be a finite sequence. Observe thatF is finite sequence-like.
Let us observe that there exists a finite sequence which is cardinal yielding.
We now state the proposition

(10) Let f be a function. Thenf is cardinal yielding if and only if for every sety such that
y∈ rng f holdsy is a cardinal number.

Let F , G be cardinal yielding finite sequences. One can check thatF a G is cardinal yielding.
Let us mention that every finite sequence of elements ofN is cardinal yielding.
One can check that there exists a finite sequence of elements ofN which is cardinal yielding.
Let D be a set and letF be a finite sequence of elements ofD∗. ThenF is a cardinal yielding

finite sequence of elements ofN.
Let F be a finite sequence of elements ofN and leti be a natural number. Observe thatF�i is

cardinal yielding.
We now state the proposition
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(11) For every functionF and for every setX holdsF�X = F �X.

Let F be an empty function. One can verify thatF is empty.
The following propositions are true:

(12) For every setp holds 〈p〉 = 〈 p〉.

(13) For all finite sequencesF , G holdsF a G = F a G.

Let X be a set. Note thatεX is finite sequence yielding.
Let f be a finite sequence. One can verify that〈 f 〉 is finite sequence yielding.
We now state the proposition

(14) Let f be a function. Thenf is finite sequence yielding if and only if for every sety such
thaty∈ rng f holdsy is a finite sequence.

Let F , G be finite sequence yielding finite sequences. Observe thatF a G is finite sequence
yielding.

We now state four propositions:

(15) Let L be a non empty loop structure andF be a finite sequence of elements of
(the carrier ofL)∗. Then dom∑F = domF.

(16) Let L be a non empty loop structure andF be a finite sequence of elements of
(the carrier ofL)∗. Then∑(ε(the carrier ofL)∗) = ε(the carrier ofL).

(17) For every non empty loop structureL and for every elementp of (the carrier ofL)∗ holds
〈∑ p〉= ∑〈p〉.

(18) Let L be a non empty loop structure andF , G be finite sequences of elements of
(the carrier ofL)∗. Then∑(F a G) = (∑F)a ∑G.

Let L be a non empty groupoid, letp be a finite sequence of elements of the carrier ofL, and
let a be an element ofL. Thena · p is a finite sequence of elements of the carrier ofL and it can be
characterized by the condition:

(Def. 2)1 dom(a· p) = domp and for every seti such thati ∈ domp holds(a· p)i = a· pi .

Let L be a non empty groupoid, letp be a finite sequence of elements of the carrier ofL, and let
a be an element ofL. The functorp·a yields a finite sequence of elements of the carrier ofL and is
defined by:

(Def. 3) dom(p·a) = domp and for every seti such thati ∈ domp holds(p·a)i = pi ·a.

Next we state several propositions:

(19) For every non empty groupoidL and for every elementa of L holdsa · ε(the carrier ofL) =
ε(the carrier ofL).

(20) For every non empty groupoidL and for every elementa of L holdsε(the carrier ofL) · a =
ε(the carrier ofL).

(21) For every non empty groupoidL and for all elementsa, b of L holdsa· 〈b〉= 〈a·b〉.

(22) For every non empty groupoidL and for all elementsa, b of L holds〈b〉 ·a = 〈b·a〉.

(23) Let L be a non empty groupoid,a be an element ofL, and p, q be finite sequences of
elements of the carrier ofL. Thena· (pa q) = (a· p)a (a·q).

1 The definition (Def. 1) has been removed.
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(24) Let L be a non empty groupoid,a be an element ofL, and p, q be finite sequences of
elements of the carrier ofL. Then(pa q) ·a = (p·a)a (q·a).

Let us note that every non empty multiplicative loop with zero structure which is non degener-
ated is also non trivial.

Let us note that there exists a non empty strict multiplicative loop with zero structure which is
unital.

Let us note that there exists a non empty double loop structure which is strict, Abelian, add-
associative, right zeroed, right complementable, associative, commutative, distributive, field-like,
unital, and non trivial.

The following three propositions are true:

(27)2 Let L be an add-associative right zeroed right complementable unital right distributive non
empty double loop structure. If 0L = 1L, thenL is trivial.

(28) LetL be an add-associative right zeroed right complementable unital distributive non empty
double loop structure,a be an element ofL, and p be a finite sequence of elements of the
carrier ofL. Then∑(a· p) = a·∑ p.

(29) LetL be an add-associative right zeroed right complementable unital distributive non empty
double loop structure,a be an element ofL, and p be a finite sequence of elements of the
carrier ofL. Then∑(p·a) = ∑ p·a.

2. SEQUENCEFLATTENING

Let D be a set and letF be an empty finite sequence of elements ofD∗. Observe that Flat(F) is
empty.

We now state several propositions:

(30) For every setD and for every finite sequenceF of elements ofD∗ holds lenFlat(F) = ∑ F .

(31) LetD, E be sets,F be a finite sequence of elements ofD∗, andG be a finite sequence of
elements ofE∗. If F = G, then lenFlat(F) = lenFlat(G).

(32) Let D be a set,F be a finite sequence of elements ofD∗, andk be a set. Supposek ∈
domFlat(F). Then there exist natural numbersi, j such thati ∈ domF and j ∈ domF(i) and

k = ∑ F�(i−′ 1) + j andF(i)( j) = Flat(F)(k).

(33) Let D be a set,F be a finite sequence of elements ofD∗, and i, j be natural num-

bers. If i ∈ domF and j ∈ domF(i), then ∑ F�(i−′ 1) + j ∈ domFlat(F) and F(i)( j) =
Flat(F)(∑ F�(i−′ 1) + j).

(34) Let L be an add-associative right zeroed right complementable non empty loop structure
andF be a finite sequence of elements of (the carrier ofL)∗. Then∑Flat(F) = ∑∑F.

(35) LetX, Y be non empty sets,f be a finite sequence of elements ofX∗, andv be a function
from X into Y. Then(dom f 7−→ v)◦ f is a finite sequence of elements ofY∗.

(36) Let X, Y be non empty sets,f be a finite sequence of elements ofX∗, andv be a func-
tion from X into Y. Then there exists a finite sequenceF of elements ofY∗ such that
F = (dom f 7−→ v)◦ f andv·Flat( f ) = Flat(F).

2 The propositions (25) and (26) have been removed.
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3. FUNCTIONS Y IELDING NATURAL NUMBERS

Let us note that/0 is natural-yielding.
Let us note that there exists a function which is natural-yielding.
Let f be a natural-yielding function and letx be a set. Thenf (x) is a natural number.
Let f be a natural-yielding function, letx be a set, and letn be a natural number. One can verify

that f +· (x,n) is natural-yielding.
Let X be a set. One can verify that every function fromX into N is natural-yielding.
Let X be a set. One can verify that there exists a many sorted set indexed byX which is natural-

yielding.
Let X be a set and letb1, b2 be natural-yielding many sorted sets indexed byX. The functor

b1 +b2 yielding a many sorted set indexed byX is defined as follows:

(Def. 5)3 For every setx holds(b1 +b2)(x) = b1(x)+b2(x).

Let us observe that the functorb1 + b2 is commutative. The functorb1−′ b2 yields a many sorted
set indexed byX and is defined as follows:

(Def. 6) For every setx holds(b1−′ b2)(x) = b1(x)−′ b2(x).

One can prove the following propositions:

(37) LetX be a set andb, b1, b2 be natural-yielding many sorted sets indexed byX. If for every
setx such thatx∈ X holdsb(x) = b1(x)+b2(x), thenb = b1 +b2.

(38) LetX be a set andb, b1, b2 be natural-yielding many sorted sets indexed byX. If for every
setx such thatx∈ X holdsb(x) = b1(x)−′ b2(x), thenb = b1−′ b2.

Let X be a set and letb1, b2 be natural-yielding many sorted sets indexed byX. Observe that
b1 +b2 is natural-yielding andb1−′ b2 is natural-yielding.

The following two propositions are true:

(39) For every setX and for all natural-yielding many sorted setsb1, b2, b3 indexed byX holds
(b1 +b2)+b3 = b1 +(b2 +b3).

(40) For every setX and for all natural-yielding many sorted setsb, c, d indexed byX holds
b−′ c−′ d = b−′ (c+d).

4. THE SUPPORT OF AFUNCTION

Let f be a function. The functor supportf is defined by:

(Def. 7) For every setx holdsx∈ supportf iff f (x) 6= 0.

The following proposition is true

(41) For every functionf holds supportf ⊆ dom f .

Let f be a function. We say thatf is finite-support if and only if:

(Def. 8) supportf is finite.

We introducef has finite-support as a synonym off is finite-support.
Let us observe that/0 is finite-support.
Let us mention that every function which is finite is also finite-support.
Let us note that there exists a function which is natural-yielding, finite-support, and non empty.
Let f be a finite-support function. Note that supportf is finite.
Let X be a set. One can check that there exists a function fromX into N which is finite-support.

3 The definition (Def. 4) has been removed.
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Let f be a finite-support function and letx, y be sets. One can verify thatf +· (x,y) is finite-
support.

Let X be a set. One can check that there exists a many sorted set indexed byX which is natural-
yielding and finite-support.

We now state two propositions:

(42) For every setX and for all natural-yielding many sorted setsb1, b2 indexed byX holds
support(b1 +b2) = supportb1∪supportb2.

(43) For every setX and for all natural-yielding many sorted setsb1, b2 indexed byX holds
support(b1−′ b2)⊆ supportb1.

Let X be a non empty set, letSbe a zero structure, and letf be a function fromX into S. The
functor Supportf yielding a subset ofX is defined by:

(Def. 9) For every elementx of X holdsx∈ Supportf iff f (x) 6= 0S.

Let X be a non empty set, letSbe a zero structure, and letp be a function fromX into S. We
say thatp is finite-Support if and only if:

(Def. 10) Supportp is finite.

We introducep has finite-Support as a synonym ofp is finite-Support.

5. BAGS

Let X be a set. A bag ofX is a natural-yielding finite-support many sorted set indexed byX.
Let X be a finite set. Note that every many sorted set indexed byX is finite-support.
Let X be a set and letb1, b2 be bags ofX. One can verify thatb1 + b2 is finite-support and

b1−′ b2 is finite-support.
One can prove the following proposition

(44) For every setX holdsX 7−→ 0 is a bag ofX.

Let n be an ordinal number and letp, q be bags ofn. The predicatep < q is defined by:

(Def. 11) There exists an ordinal numberk such thatp(k) < q(k) and for every ordinal numberl such
that l ∈ k holdsp(l) = q(l).

Let us note that the predicatep < q is antisymmetric.
Next we state the proposition

(45) For every ordinal numbern and for all bagsp, q, r of n such thatp < q andq < r holds
p < r.

Let n be an ordinal number and letp, q be bags ofn. The predicatep≤ q is defined by:

(Def. 12) p < q or p = q.

Let us note that the predicatep≤ q is reflexive.
One can prove the following four propositions:

(46) For every ordinal numbern and for all bagsp, q, r of n such thatp≤ q andq≤ r holds
p≤ r.

(47) For every ordinal numbern and for all bagsp, q, r of n such thatp < q andq≤ r holds
p < r.

(48) For every ordinal numbern and for all bagsp, q, r of n such thatp≤ q andq < r holds
p < r.

(49) For every ordinal numbern and for all bagsp, q of n holdsp≤ q or q≤ p.
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Let X be a set and letd, b be bags ofX. The predicated | b is defined by:

(Def. 13) For every setk holdsd(k)≤ b(k).

Let us note that the predicated | b is reflexive.
Next we state several propositions:

(50) For every setn and for all bagsd, b of n such that for every setk such thatk ∈ n holds
d(k)≤ b(k) holdsd | b.

(51) For every ordinal numbern and for all bagsb1, b2 of n such thatb1 | b2 holds(b2−′ b1)+
b1 = b2.

(52) For every setX and for all bagsb1, b2 of X holds(b2 +b1)−′ b1 = b2.

(53) For every ordinal numbern and for all bagsd, b of n such thatd | b holdsd ≤ b.

(54) For every setn and for all bagsb, b1, b2 of n such thatb = b1 +b2 holdsb1 | b.

Let X be a set. The functor BagsX is defined by:

(Def. 14) For every setx holdsx∈ BagsX iff x is a bag ofX.

Let X be a set. Then BagsX is a subset of BagsX.
The following proposition is true

(55) Bags/0 = { /0}.

Let X be a set. Note that BagsX is non empty.
Let X be a set and letB be a non empty subset of BagsX. We see that the element ofB is a bag

of X.
Let n be a set, letL be a non empty 1-sorted structure, letp be a function from Bagsn into L,

and letx be a bag ofn. Thenp(x) is an element ofL.
Let X be a set. The functor EmptyBagX yielding an element of BagsX is defined as follows:

(Def. 15) EmptyBagX = X 7−→ 0.

We now state several propositions:

(56) For all setsX, x holds(EmptyBagX)(x) = 0.

(57) For every setX and for every bagb of X holdsb+EmptyBagX = b.

(58) For every setX and for every bagb of X holdsb−′ EmptyBagX = b.

(59) For every setX and for every bagb of X holds EmptyBagX−′ b = EmptyBagX.

(60) For every setX and for every bagb of X holdsb−′ b = EmptyBagX.

(61) For every setn and for all bagsb1, b2 of n such thatb1 | b2 andb2−′ b1 = EmptyBagn
holdsb2 = b1.

(62) For every setn and for every bagb of n such thatb | EmptyBagn holds EmptyBagn = b.

(63) For every setn and for every bagb of n holds EmptyBagn | b.

(64) For every ordinal numbern and for every bagb of n holds EmptyBagn≤ b.

Let n be an ordinal number. The functor BagOrdern yields an order in Bagsn and is defined as
follows:

(Def. 16) For all bagsp, q of n holds〈〈p, q〉〉 ∈ BagOrdern iff p≤ q.
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Let n be an ordinal number. Note that BagOrdern is linear-order.
Let X be a set and letf be a function fromX into N. The functor NatMinorf yields a subset of

NX and is defined by the condition (Def. 17).

(Def. 17) Letg be a natural-yielding many sorted set indexed byX. Theng∈NatMinor f if and only
if for every setx such thatx∈ X holdsg(x)≤ f (x).

The following proposition is true

(65) For every setX and for every functionf from X into N holds f ∈ NatMinor f .

Let X be a set and letf be a function fromX into N. Observe that NatMinorf is non empty and
functional.

Let X be a set and letf be a function fromX into N. Note that every element of NatMinorf is
natural-yielding.

Next we state the proposition

(66) For every setX and for every finite-support functionf from X into N holds NatMinorf ⊆
BagsX.

Let X be a set and letf be a finite-support function fromX into N. Then supportf is an element
of FinX.

One can prove the following proposition

(67) For every non empty setX and for every finite-support functionf from X into N holds

NatMinor f = ·N-∑supportf (+N)◦( f ,1).

Let X be a set and letf be a finite-support function fromX into N. Note that NatMinorf is
finite.

Let n be an ordinal number and letb be a bag ofn. The functor divisorsb yielding a finite
sequence of elements of Bagsn is defined as follows:

(Def. 18) There exists a non empty finite subsetS of Bagsn such that divisorsb =
SgmX(BagOrdern,S) and for every bagp of n holdsp∈ S iff p | b.

Let n be an ordinal number and letb be a bag ofn. Note that divisorsb is non empty and
one-to-one.

One can prove the following propositions:

(68) Letn be an ordinal number,i be a natural number, andb be a bag ofn. If i ∈ domdivisorsb,
then(divisorsb)i qua element of Bagsn | b.

(69) For every ordinal numbern and for every bagb of n holds(divisorsb)1 = EmptyBagn and
(divisorsb)lendivisorsb = b.

(70) Letn be an ordinal number,i be a natural number, andb, b1, b2 be bags ofn. If i > 1 and
i < lendivisorsb, then(divisorsb)i 6= EmptyBagn and(divisorsb)i 6= b.

(71) For every ordinal numbern holds divisorsEmptyBagn = 〈EmptyBagn〉.

Let n be an ordinal number and letb be a bag ofn. The functor decompb yields a finite sequence
of elements of(Bagsn)2 and is defined by:

(Def. 19) domdecompb = domdivisorsb and for every natural numberi and for every bagp of n
such thati ∈ domdecompb andp = (divisorsb)i holds(decompb)i = 〈p,b−′ p〉.

One can prove the following three propositions:

(72) Letn be an ordinal number,i be a natural number, andb be a bag ofn. If i ∈ domdecompb,
then there exist bagsb1, b2 of n such that(decompb)i = 〈b1,b2〉 andb = b1 +b2.
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(73) Letn be an ordinal number andb, b1, b2 be bags ofn. If b = b1 + b2, then there exists a
natural numberi such thati ∈ domdecompb and(decompb)i = 〈b1,b2〉.

(74) Let n be an ordinal number,i be a natural number, andb, b1, b2 be bags ofn. If i ∈
domdecompb and(decompb)i = 〈b1,b2〉, thenb1 = (divisorsb)i .

Let n be an ordinal number and letb be a bag ofn. Observe that decompb is non empty,
one-to-one, and finite sequence yielding.

Let n be an ordinal number and letb be an element of Bagsn. Observe that decompb is non
empty, one-to-one, and finite sequence yielding.

Next we state four propositions:

(75) For every ordinal numbern and for every bagb of n holds(decompb)1 = 〈EmptyBagn,b〉
and(decompb)lendecompb = 〈b,EmptyBagn〉.

(76) Letn be an ordinal number,i be a natural number, andb, b1, b2 be bags ofn. If i > 1 and
i < lendecompb and(decompb)i = 〈b1,b2〉, thenb1 6= EmptyBagn andb2 6= EmptyBagn.

(77) For every ordinal numbern holds decompEmptyBagn = 〈〈EmptyBagn,EmptyBagn〉〉.

(78) Let n be an ordinal number,b be a bag ofn, and f , g be finite sequences of elements of
((Bagsn)3)∗. Suppose that

(i) dom f = domdecompb,

(ii) domg = domdecompb,

(iii) for every natural numberk such thatk∈ dom f holds f (k) = (decomp(((decompb)k)1 qua
element of Bagsn))_ (lendecomp(((decompb)k)1 quaelement of Bagsn) 7→ 〈((decompb)k)2〉),
and

(iv) for every natural numberk such thatk∈domgholdsg(k)= (lendecomp(((decompb)k)2 qua
element of Bagsn) 7→ 〈((decompb)k)1〉)_ decomp(((decompb)k)2 qua element of Bagsn).

Then there exists a permutationp of domFlat( f ) such that Flat(g) = Flat( f ) · p.

6. FORMAL POWER SERIES

Let X be a set and letSbe a 1-sorted structure. A series ofX, S is a function from BagsX into S.
Let n be a set, letL be a non empty loop structure, and letp, q be series ofn, L. The functor

p+q yielding a series ofn, L is defined as follows:

(Def. 21)4 For every bagx of n holds(p+q)(x) = p(x)+q(x).

We now state the proposition

(79) Letn be a set,L be a right zeroed non empty loop structure, andp, q be series ofn, L. Then
Support(p+q)⊆ Supportp∪Supportq.

Let n be a set, letL be an Abelian right zeroed non empty loop structure, and letp, q be series
of n, L. Let us observe that the functorp+q is commutative.

One can prove the following proposition

(80) Letn be a set,L be an add-associative right zeroed non empty double loop structure, and
p, q, r be series ofn, L. Then(p+q)+ r = p+(q+ r).

Let n be a set, letL be an add-associative right zeroed right complementable non empty loop
structure, and letp be a series ofn, L. The functor−p yields a series ofn, L and is defined as
follows:

(Def. 22) For every bagx of n holds(−p)(x) =−p(x).

4 The definition (Def. 20) has been removed.
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Let us observe that the functor−p is involutive.
Let n be a set, letL be an add-associative right zeroed right complementable non empty loop

structure, and letp, q be series ofn, L. The functorp− q yielding a series ofn, L is defined as
follows:

(Def. 23) p−q = p+−q.

Let n be a set and letSbe a non empty zero structure. The functor 0nSyields a series ofn, Sand
is defined as follows:

(Def. 24) 0nS= Bagsn 7−→ 0S.

We now state two propositions:

(81) For every setn and for every non empty zero structureS and for every bagb of n holds
(0nS)(b) = 0S.

(82) For every setn and for every right zeroed non empty loop structureL and for every series
p of n, L holdsp+0nL = p.

Let n be a set and letL be a unital non empty multiplicative loop with zero structure. The functor
1 (n,L) yields a series ofn, L and is defined by:

(Def. 25) 1(n,L) = 0nL+· (EmptyBagn,1L).

The following propositions are true:

(83) Letn be a set,L be an add-associative right zeroed right complementable non empty loop
structure, andp be a series ofn, L. Thenp− p = 0nL.

(84) Let n be a set andL be a unital non empty multiplicative loop with zero structure. Then
(1 (n,L))(EmptyBagn) = 1L and for every bagb of n such thatb 6= EmptyBagn holds
(1 (n,L))(b) = 0L.

Let n be an ordinal number, letL be an add-associative right complementable right zeroed non
empty double loop structure, and letp, q be series ofn, L. The functorp∗q yielding a series ofn,
L is defined by the condition (Def. 26).

(Def. 26) Letb be a bag ofn. Then there exists a finite sequences of elements of the carrier ofL
such that

(i) (p∗q)(b) = ∑s,

(ii) lens= lendecompb, and

(iii) for every natural numberk such thatk ∈ doms there exist bagsb1, b2 of n such that
(decompb)k = 〈b1,b2〉 andsk = p(b1) ·q(b2).

One can prove the following two propositions:

(85) Let n be an ordinal number,L be an Abelian add-associative right zeroed right comple-
mentable distributive associative non empty double loop structure, andp, q, r be series ofn,
L. Thenp∗ (q+ r) = p∗q+ p∗ r.

(86) Let n be an ordinal number,L be an Abelian add-associative right zeroed right comple-
mentable unital distributive associative non empty double loop structure, andp, q, r be series
of n, L. Then(p∗q)∗ r = p∗ (q∗ r).

Let n be an ordinal number, letL be an Abelian add-associative right zeroed right comple-
mentable commutative non empty double loop structure, and letp, q be series ofn, L. Let us
observe that the functorp∗q is commutative.

One can prove the following propositions:
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(87) Let n be an ordinal number,L be an add-associative right complementable right zeroed
unital distributive non empty double loop structure, andp be a series ofn, L. Thenp∗0nL =
0nL.

(88) Let n be an ordinal number,L be an add-associative right complementable right zeroed
distributive unital non trivial non empty double loop structure, andp be a series ofn, L. Then
p∗1 (n,L) = p.

(89) Let n be an ordinal number,L be an add-associative right complementable right zeroed
distributive unital non trivial non empty double loop structure, andp be a series ofn, L. Then
1 (n,L)∗ p = p.

7. POLYNOMIALS

Let n be a set and letSbe a non empty zero structure. Note that there exists a series ofn, Swhich is
finite-Support.

Let n be an ordinal number and letSbe a non empty zero structure. A polynomial ofn, S is a
finite-Support series ofn, S.

Let n be an ordinal number, letL be a right zeroed non empty loop structure, and letp, q be
polynomials ofn, L. Note thatp+q is finite-Support.

Let n be an ordinal number, letL be an add-associative right zeroed right complementable non
empty loop structure, and letp be a polynomial ofn, L. One can verify that−p is finite-Support.

Let n be a natural number, letL be an add-associative right zeroed right complementable non
empty loop structure, and letp, q be polynomials ofn, L. Observe thatp−q is finite-Support.

Let n be an ordinal number and letS be a non empty zero structure. Note that 0nS is finite-
Support.

Let n be an ordinal number and letL be an add-associative right zeroed right complementable
unital right distributive non trivial non empty double loop structure. One can verify that 1(n,L) is
finite-Support.

Let n be an ordinal number, letL be an add-associative right complementable right zeroed unital
distributive non empty double loop structure, and letp, q be polynomials ofn, L. Note thatp∗q is
finite-Support.

8. THE RING OF POLYNOMIALS

Let n be an ordinal number and letL be a right zeroed add-associative right complementable unital
distributive non trivial non empty double loop structure. The functor Polynom-Ring(n,L) yields a
strict non empty double loop structure and is defined by the conditions (Def. 27).

(Def. 27)(i) For every setx holdsx∈ the carrier of Polynom-Ring(n,L) iff x is a polynomial ofn, L,

(ii) for all elementsx, y of Polynom-Ring(n,L) and for all polynomialsp, q of n, L such that
x = p andy = q holdsx+y = p+q,

(iii) for all elementsx, y of Polynom-Ring(n,L) and for all polynomialsp, q of n, L such that
x = p andy = q holdsx ·y = p∗q,

(iv) 0Polynom-Ring(n,L) = 0nL, and

(v) 1Polynom-Ring(n,L) = 1 (n,L).

Let n be an ordinal number and letL be an Abelian right zeroed add-associative right comple-
mentable unital distributive non trivial non empty double loop structure. Note that Polynom-Ring(n,L)
is Abelian.

Let n be an ordinal number and letL be an add-associative right zeroed right complementable
unital distributive non trivial non empty double loop structure. Observe that Polynom-Ring(n,L) is
add-associative.

Let n be an ordinal number and letL be a right zeroed add-associative right complementable
unital distributive non trivial non empty double loop structure. Note that Polynom-Ring(n,L) is
right zeroed.
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Let n be an ordinal number and letL be a right complementable right zeroed add-associative
unital distributive non trivial non empty double loop structure. Note that Polynom-Ring(n,L) is
right complementable.

Let n be an ordinal number and letL be an Abelian add-associative right zeroed right com-
plementable commutative unital distributive non trivial non empty double loop structure. One can
verify that Polynom-Ring(n,L) is commutative.

Let n be an ordinal number and letL be an Abelian add-associative right zeroed right comple-
mentable unital distributive associative non trivial non empty double loop structure. One can check
that Polynom-Ring(n,L) is associative.

Let n be an ordinal number and letL be a right zeroed Abelian add-associative right comple-
mentable unital distributive associative non trivial non empty double loop structure. One can verify
that Polynom-Ring(n,L) is unital and right distributive.
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[13] Czesław Bylínski. Binary operations.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/binop_1.html.
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