Fano-Desargues Parallelity Spaces¹

Eugeniusz Kusak Warsaw University Białystok Wojciech Leończuk Warsaw University Białystok

Summary. This article is the second part of Parallelity Space. It contains definition of a Fano-Desargues space, axioms of a Fano-Desargues parallelity space, definition of the relations: collinearity, parallelogram and directed congruence and some basic facts concerned with them.

MML Identifier: PARSP_2.

WWW: http://mizar.org/JFM/Vol2/parsp_2.html

The articles [1], [7], [5], [4], [6], [2], and [3] provide the notation and terminology for this paper. In this paper *F* is a field.

We now state the proposition

(1) Aff_{F^3} is a parallelity space.

We use the following convention: a, b, c, d, p, q, r are elements of Aff_{F^3} , e, f, g, h are elements of [: the carrier of F, the carrier of F, the carrier of F.], and K, L are elements of F.

Next we state several propositions:

- (2) $a,b \parallel c,d$ if and only if there exist e, f, g, h such that $\langle a,b,c,d \rangle = \langle e,f,g,h \rangle$ but there exists K such that $K \cdot (e_1 f_1) = g_1 h_1$ and $K \cdot (e_2 f_2) = g_2 h_2$ and $K \cdot (e_3 f_3) = g_3 h_3$ or $e_1 f_1 = 0_F$ and $e_2 f_2 = 0_F$ and $e_3 f_3 = 0_F$.
- (3) If $a,b \not\parallel a,c$ and $\langle a,b,a,c \rangle = \langle e,f,e,g \rangle$, then $e \neq f$ and $e \neq g$ and $f \neq g$.
- (4) Suppose $a, b \not\parallel a, c$ and $\langle a, b, a, c \rangle = \langle e, f, e, g \rangle$ and $K \cdot (e_1 f_1) = L \cdot (e_1 g_1)$ and $K \cdot (e_2 f_2) = L \cdot (e_2 g_2)$ and $K \cdot (e_3 f_3) = L \cdot (e_3 g_3)$. Then $K = 0_F$ and $L = 0_F$.
- (5) If $a, b \not\parallel a, c$ and $a, b \mid\mid c, d$ and $a, c \mid\mid b, d$ and $\langle a, b, c, d \rangle = \langle e, f, g, h \rangle$, then $h_1 = (f_1 + g_1) e_1$ and $h_2 = (f_2 + g_2) e_2$ and $h_3 = (f_3 + g_3) e_3$.
- (6) There exist a, b, c such that $a, b \not\parallel a, c$.
- (7) If $\mathbf{1}_F + \mathbf{1}_F \neq 0_F$ and $b, c \parallel a, d$ and $a, b \parallel c, d$ and $a, c \parallel b, d$, then $a, b \parallel a, c$.
- (8) If $a, p \not\parallel a, b$ and $a, p \not\parallel a, c$ and $a, p \mid\mid b, q$ and $a, p \mid\mid c, r$ and $a, b \mid\mid p, q$ and $a, c \mid\mid p, r$, then $b, c \mid\mid q, r$.

Let I_1 be a parallelity space. We say that I_1 is Fano-Desarques space-like if and only if the conditions (Def. 1) are satisfied.

1

¹Supported by RPBP.III-24.C2.

- (Def. 1)(i) There exist elements a, b, c of I_1 such that $a, b \not\parallel a, c$,
 - (ii) for all elements a, b, c, d of I_1 such that b, $c \parallel a$, d and a, $b \parallel c$, d and a, $c \parallel b$, d holds a, $b \parallel a$, c, and
 - (iii) for all elements a, b, c, p, q, r of I_1 such that a, $p \not\parallel a$, b and a, $p \not\parallel a$, c and a, $p \mid\mid b$, q and a, $b \mid\mid p$, q and a, $b \mid\mid p$, q and a, $c \mid\mid p$, c holds $c \mid\mid q$, c.

Let us note that there exists a parallelity space which is strict and Fano-Desarques space-like.

A Fano-Desarques space is a Fano-Desarques space-like parallelity space.

We use the following convention: F_1 denotes a Fano-Desarques space and a, b, c, d, p, q, r, s, o, x, y denote elements of F_1 .

The following proposition is true

 $(13)^1$ If $p \neq q$, then there exists r such that $p, q \not\parallel p, r$.

Let us consider F_1 , a, b, c. We say that a, b and c are collinear if and only if:

(Def. 2) $a,b \parallel a,c$.

One can prove the following propositions:

- $(15)^2$ Suppose a, b and c are collinear. Then
 - (i) a, c and b are collinear,
- (ii) c, b and a are collinear,
- (iii) b, a and c are collinear,
- (iv) b, c and a are collinear, and
- (v) c, a and b are collinear.
- $(17)^3$ If a, b and c are not collinear and a, $b \parallel p$, q and a, $c \parallel p$, r and $p \neq q$ and $p \neq r$, then p, q and r are not collinear.
- (18) If a = b or b = c or c = a, then a, b and c are collinear.
- (19) Suppose $a \neq b$ and a, b and p are collinear and a, b and q are collinear and a, b and r are collinear. Then p, q and r are collinear.
- (20) If $p \neq q$, then there exists r such that p, q and r are not collinear.
- (21) If a, b and c are collinear and a, b and d are collinear, then a, $b \parallel c$, d.
- (22) If a, b and c are not collinear and a, b || c, d, then a, b and d are not collinear.
- (23) Suppose a, b and c are not collinear and a, $b \parallel c$, d and $c \neq d$. Then a, b and x are not collinear or c, d and x are not collinear.
- (24) If o, a and b are not collinear, then o, a and x are not collinear or a and b are not collinear or a and b
- (25) Suppose $o \neq a$ and $o \neq b$ and o, a and b are collinear and o, a and b are collinear and a, a and a are collinear. Then a, a, a in a in a, a in a in a.
- (26) Suppose that
 - (i) $a,b \not\parallel c,d$,
- (ii) a, b and p are collinear,
- (iii) a, b and q are collinear,
- (iv) c, d and p are collinear, and
- (v) c, d and q are collinear.

Then p = q.

¹ The propositions (9)–(12) have been removed.

² The proposition (14) has been removed.

³ The proposition (16) has been removed.

- (27) If $a \neq b$ and a, b and c are collinear and a, $b \parallel c$, d, then a, $c \parallel b$, d.
- (28) If $a \neq b$ and a, b and c are collinear and a, b ||c,d, then c, b ||c,d.
- (29) Suppose that
 - (i) o, a and c are not collinear,
- (ii) o, a and b are collinear,
- (iii) o, c and p are collinear,
- (iv) o, c and q are collinear,
- (v) $a,c \parallel b,p$, and
- (vi) $a, c \parallel b, q$.

Then p = q.

- (30) If $a \neq b$ and a, b and c are collinear and a, b and d are collinear, then a, c and d are collinear.
- (31) If a, b and c are collinear and a, c and d are collinear and $a \neq c$, then b, c and d are collinear.

Let us consider F_1 , a, b, c, d. We say that a, b, c, d form a parallelogram if and only if:

(Def. 3) a, b and c are not collinear and $a, b \parallel c, d$ and $a, c \parallel b, d$.

Next we state a number of propositions:

- (34)⁴ If a, b, c, d form a parallelogram, then $a \neq b$ and $b \neq c$ and $c \neq a$ and $a \neq d$ and $b \neq d$ and $c \neq d$.
- (35) Suppose a, b, c, d form a parallelogram. Then
 - (i) a, b and c are not collinear,
- (ii) b, a and d are not collinear,
- (iii) c, d and a are not collinear, and
- (iv) d, c and b are not collinear.
- (36) Suppose a, b, c, d form a parallelogram. Then a, b and c are not collinear and b, a and d are not collinear and c, d and d are not collinear and d, d and d are not collinear and d.
- (37) If a, b, c, d form a parallelogram, then a, b and x are not collinear or c, d and x are not collinear.
- (38) If a, b, c, d form a parallelogram, then a, c, b, d form a parallelogram.
- (39) If a, b, c, d form a parallelogram, then c, d, a, b form a parallelogram.
- (40) If a, b, c, d form a parallelogram, then b, a, d, c form a parallelogram.
- (41) Suppose *a*, *b*, *c*, *d* form a parallelogram. Then *a*, *c*, *b*, *d* form a parallelogram and *c*, *d*, *a*, *b* form a parallelogram and *b*, *a*, *d*, *c* form a parallelogram and *c*, *a*, *d*, *b* form a parallelogram and *d*, *b*, *c*, *a* form a parallelogram and *b*, *d*, *a*, *c* form a parallelogram and *d*, *c*, *b*, *a* form a parallelogram.

⁴ The propositions (32) and (33) have been removed.

- (42) If a, b and c are not collinear, then there exists d such that a, b, c, d form a parallelogram.
- (43) If a, b, c, p form a parallelogram and a, b, c, q form a parallelogram, then p = q.
- (44) If a, b, c, d form a parallelogram, then $a, d \not\parallel b, c$.
- (45) If a, b, c, d form a parallelogram, then a, b, d, c do not form a parallelogram.
- (46) If $a \neq b$, then there exists c such that a, b and c are collinear and $c \neq a$ and $c \neq b$.
- (47) If a, p, b, q form a parallelogram and a, p, c, r form a parallelogram, then $b, c \parallel q, r$.
- Suppose b, q and c are not collinear and a, p, b, q form a parallelogram and a, p, c, r form a parallelogram. Then b, q, c, r form a parallelogram.
- (49) Suppose that
 - (i) a, b and c are collinear,
- (ii) $b \neq c$,
- (iii) a, p, b, q form a parallelogram, and
- (iv) a, p, c, r form a parallelogram.

Then b, q, c, r form a parallelogram.

- (50) Suppose that
 - (i) a, p, b, q form a parallelogram,
- (ii) a, p, c, r form a parallelogram, and
- (iii) b, q, d, s form a parallelogram.

Then $c,d \parallel r,s$.

- (51) If $a \neq b$, then there exist c, d such that a, b, c, d form a parallelogram.
- (52) If $a \neq d$, then there exist b, c such that a, b, c, d form a parallelogram.

Let us consider F_1 , a, b, r, s. We say that a, b congr r, s if and only if:

(Def. 4) a = b and r = s or there exist p, q such that p, q, a, b form a parallelogram and p, q, r, s form a parallelogram.

Next we state a number of propositions:

- $(55)^5$ If a, a congr b, c, then b = c.
- (56) If a, b congr c, c, then a = b.
- (57) If a, b congr b, a, then a = b.
- (58) If a, b congr c, d, then a, $b \parallel c$, d.
- (59) If a, b congr c, d, then a, $c \parallel b$, d.
- (60) If a, b congr c, d and a, b and c are not collinear, then a, b, c, d form a parallelogram.
- (61) If a, b, c, d form a parallelogram, then a, b congr c, d.
- (62) Suppose a, b congr c, d and a, b and c are collinear and r, s, a, b form a parallelogram. Then r, s, c, d form a parallelogram.
- (63) If a, b congr c, x and a, b congr c, y, then x = y.
- (64) There exists d such that a, b congr c, d.

⁵ The propositions (53) and (54) have been removed.

- $(66)^6$ a, b congr a, b.
- (67) If r, s congr a, b and r, s congr c, d, then a, b congr c, d.
- (68) If a, b congr c, d, then c, d congr a, b.
- (69) If a, b congr c, d, then b, a congr d, c.

REFERENCES

- [1] Czesław Byliński. Some basic properties of sets. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc_
- [2] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/vectsp_1.html.
- [3] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Parallelity spaces. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/parsp_1.html.
- [4] Andrzej Trybulec. Domains and their Cartesian products. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/domain_l.html.
- [5] Andrzej Trybulec. Tuples, projections and Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/mcart_1.html.
- [6] Wojciech A. Trybulec. Vectors in real linear space. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/rlvect_1.html.
- [7] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.

Received March 23, 1990

Published January 2, 2004

⁶ The proposition (65) has been removed.