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Summary. In this article we introduce some definitions concerning measurable func-
tions and prove related properties.

MML Identifier: MESFUNC1.
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The articles[[18],[[13],[121],[13],[[19],[110], [16], [22], [11], 12],120], [17]/ [14] [ [1] [4] [ 15],16],
[71, [8], [8], [12], and [15] provide the notation and terminology for this paper.

1. CARDINAL NUMBERS OFZ AND Q

In this papelk is a natural number,is a real numbei,is an integer, and is a rational number.
The subseZ_ of R is defined by:

(Def. 1) r € Z_ iff there existk such thar = —k.

Let us note thaZ_ is non empty.
The following three propositions are true:

1) N~Z_.
(2) Z=7Z_UN.
(3) N~Z.

Z is a subset oR.
Let n be a natural number. The funct@(n) yielding a subset of) is defined by:
i

(Def. 2) qg< Q(n) iff there exists such thafy = |

Let n be a natural number. One can verify tfiEtn+ 1) is non empty.
We now state two propositions:

(4) For every natural numberholdsZ ~ Q(n+1).

5) N=Q.

1 © Association of Mizar Users
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2. BAsIC OPERATIONS OFEXTENDED REAL VALUED FUNCTIONS

Let C be a non empty set, ldtbe a partial function fron€ to R, and letx be a set. Therfi(x) is an
extended real number.

Let C be a non empty set and Iét, f» be partial functions fron€ to R. The functorfy + f,
yields a partial function fron€ to R and is defined by:

(Def. 3) dOI'T( fi+ fz) = domflﬂdomfz\ ( fl—l({,oo}) N f2_1({+°°})U fl_l({JrOo}) n fz_l({foo}))
and for every elemerttof C such that € dom( f1 + f2) holds(f1 + f2)(c) = f1(c) + f2(c).

The functorf; — f, yields a partial function fronT to R and is defined by:

(Def. 4) donf;— f) =domfyndomfy\ (f1~2({++e0}) N f2 H({+e0})U fy ({0} o L ({—eo}))
and for every elemerttof C such that € dom( f1 — f2) holds(f; — f2)(c) = f1(c) — f2(c).

The functorf; f, yielding a partial function fron€ to R is defined by:

(Def. 5) donmfy f2) = domf;ndomf;, and for every elemerntof C such that € dom( f; f) holds
(f1 f2)(c) = fi(c) - f2(c).
LetC be a non empty set, létbe a partial function front to R, and letr be a real number. The
functorr f yielding a partial function fron€ to R is defined as follows:

(Def. 6) donir f) =domf and for every elemert of C such thatc € dom(r f) holds(r f)(c) =
R(r)- f(c).

We now state the proposition

(6) LetC be a non empty sef, be a partial function fron€ to R, andr be a real number.

Suppose # 0. Letc be an element of. If c € dom(r f), thenf(c) = %.

Let C be a non empty set and I&tbe a partial function fron€ to R. The functor—f yields a
partial function fromC to R and is defined as follows:

(Def. 7) don{—f) =domf and for every element of C such that € dom(—f) holds(—f)(c) =
—f(c).
The extended real numbgris defined by:
(Def.8) 1=1.

LetC be a non empty set, létbe a partial function front to R, and letr be a real number. The
functor § yields a partial function fron€ to R and is defined by:

(Def. 9) don(%l: domf \ f~1({0g}) and for every element of C such thatc € dom(}) holds
(F)(0)=Tg.
Next we state the proposition

(7) LetC be a non empty set arfdbe a partial function fron€ to R. Then donﬁ%) =domf\
f=1({0z}) and for every elementof C such that € dom(#) holds(¥)(c) = %
LetC be a non empty set and létbe a partial function fron€ to R. The functor f| yielding a
partial function fromC to R is defined by:
(Def. 10) domjf| =domf and for every elemerttof C such that € dom| f| holds| f|(c) = | f(c)|.
Next we state two propositions:

(QE] For every non empty s€& and for all partial functiondy, f, fromC to R holds f{ + fo =
fo+ f1.

(10) For every non empty s€ and for all partial functiondy, f> from C to R holds f; f, =
fo f1.

Let C be a non empty set and I&t, f> be partial functions fron€ to R. Let us notice that the
functor f1 + f is commutative. Let us note that the funcferf, is commutative.

1 The proposition (8) has been removed.
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3. LEVEL SETS
Next we state several propositions:

(11) For every real numberthere exists a natural numbesuch thar < n.
(12) For every real numberthere exists a natural numbesuch that-n <r.

(13) For all real numbens ssuch that < sthere exists a hatural numbesuch thatn%1 <S—T.

(14) For all real numbens ssuch that for every natural numheholdsr — F11 <sholdsr <s.

(15) For every extended real numtzesuch that for every real numbeiholdsR(r) < a holds

(16) For every extended real numtzesuch that for every real numbeioldsa < R(r) holds
a=—o,

Let X be a set, leEbe ac-field of subsets oK, and letA be a set. We say thatis measurable
on Sif and only if:

(Def. 11) A€ S

Next we state the proposition

(17) LetX, Abe sets an&be ao-field of subsets oK. ThenA is measurable o8if and only
if for every o-measurevl on SholdsA is measurable w.r.i.

For simplicity, we adopt the following conventiodX is a non empty sek is an element oK,
f, g are partial functions fronX to R, Sis aco-field of subsets oK, F is a function fromN into S,
Ais a setais an extended real number,s are real numbers, andis a natural number.

Let us considekK, f, a. The functor LE-donif, a) yields a subset of and is defined as follows:

(Def. 12) x e LE-dom(f,a) iff x € domf and there exists an extended real numpsuch thaty =
f(x) andy < a.

The functor LEQ-dortif,a) yields a subset ok and is defined as follows:

(Def. 13) x € LEQ-don1f,a) iff x € domf and there exists an extended real numpsuch that
y= f(x) andy < a.

The functor GT-dortif,a) yielding a subset oX is defined by:

(Def. 14) x e GT-dom(f,a) iff x € domf and there exists an extended real numpsuch thaty =
f(x) anda<y.

The functor GTE-dorfff,a) yielding a subset oX is defined by:

(Def. 15) x € GTE-don{f,a) iff x € domf and there exists an extended real numpsuch that
y=f(x)anda<y.

The functor EQ-dorfif, a) yields a subset ok and is defined by:

(Def. 16) x € EQ-don(f,a) iff x € domf and there exists an extended real numpsuch thaty =
f(x) anda=y.

One can prove the following propositions:
(18) ForallX, s f, A asuch thath C domf holdsANGTE-don(f,a) = A\ ANLE-dom(f,a).
(19) ForallX, s, f, A asuchthaiA C domf holdsANGT-dom(f,a) = A\ANLEQ-dom(f,a).
(20) ForallX, s, f, A asuchthaiA C domf holdsANLEQ-dom(f,a) = A\ANGT-dom(f,a).
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(21) ForallX, s f, A asuchthath C domf holdsANLE-dom(f,a) = A\ ANGTE-don{f,a).
(22) ForallX, s, f, A aholdsANEQ-don{f,a) = ANGTE-don{ f,a) NLEQ-dom(f,a).

(23) ForallX,SF, f, A r such that for every holdsF (n) = ANGT-dom( f, R(r — Fll)) holds
ANGTE-don(f,R(r)) = NrngF.

(24) For allX, S F, f, A and for every real numbar such that for everyr holds F(n) =
ANLE-dom(f,R(r + 711)) holdsANLEQ-dom(f,R(r)) = NrngF.

(25) For allX, S F, f, A and for every real numbar such that for everyr holds F(n) =
ANLEQ-dom(f,R(r — +1;)) holdsAnLE-dom(f, R(r)) = UrngF.

(26) ForallX, S F, f, A r such that for every holdsF (n) = AN GTE-don{f,R(r + Fll))
holdsAN GT-dom(f,R(r)) = [JrngF.

(27) ForallX, S F, f, A such that for everyr holdsF (n) = AN GT-dom(f,R(n)) holdsAN
EQ-don(f,4) = rngF.

(28) ForallX, S F, f, Asuch that for every holdsF (n) = AN LE-dom( f,R(n)) holdsAN
LE-dom(f,4oc0) = [JrngF.

(29) ForallX, S F, f, A such that for every holds F(n) = AN LE-dom( f,R(—n)) holds
ANEQ-don{f,—o) = rngF.

(30) For allX, S F, f, A such that for everyr holdsF(n) = AN GT-dom(f,R(—n)) holds
ANGT-dom(f, —) = JrngF.

4. MEASURABLE FUNCTIONS

Let X be a non empty set, I&be ac-field of subsets oK, let f be a partial function fronX to R,
and letA be an element db. We say thatf is measurable oA if and only if:

(Def. 17) For every real numberholdsANLE-dom(f,R(r)) is measurable o8.

In the sequeA, B denote elements @&
The following propositions are true:

(31) LetgivenX, S f, A SupposeA C domf. Then f is measurable oA if and only if for
every real number holdsANGTE-don( f,R(r)) is measurable o8.

(32) LetgivenX, S f, A Thenf is measurable oA if and only if for every real numberholds
ANLEQ-dom(f,R(r)) is measurable 08.

(33) LetgivenX, S f, A. SupposéA C domf. Then f is measurable oA if and only if for
every real number holdsANGT-dom(f,R(r)) is measurable o8.

(34) ForallX, S f, A BsuchthaB C Aandf is measurable oA holds f is measurable 0B.

(35) ForallX, S f, A B such thatf is measurable oA and f is measurable oB holds f is
measurable oAUB.

(36) ForallX, S f, A r, ssuch thatf is measurable oA and A C domf holds AN
GT-dom(f,R(r)) NLE-dom( f,IR(s)) is measurable o8.

(37) ForallX, S f, Asuch thatf is measurable oA andA C domf holdsANEQ-don{ f, +)
is measurable o8.

(38) ForallX, S f, Asuch thatf is measurable oA holdsANEQ-don{ f, —) is measurable
onsS
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(39) ForallX, S, f, Asuch thatf is measurable oAandA C domf holdsANGT-dom(f, —o)N

LE-dom(f,+0) is measurable o8.

(40) LetgivenX, S f, g, A, r. Supposef is measurable oA andg is measurable oA and

A C domg. ThenANLE-dom(f,R(r)) NGT-dom(g,R(r)) is measurable o8.

(41) ForallX, S f, A r such thatf is measurable oA andA C domf holdsr f is measurable
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