Definitions and Basic Properties of Measurable Functions

Noboru Endou Shinshu University Nagano Katsumi Wasaki Shinshu University Nagano

Yasunari Shidama Shinshu University Nagano

Summary. In this article we introduce some definitions concerning measurable functions and prove related properties.

MML Identifier: MESFUNC1.

WWW: http://mizar.org/JFM/Vol12/mesfunc1.html

The articles [18], [13], [21], [3], [19], [10], [16], [22], [11], [2], [20], [17], [14], [1], [4], [5], [6], [7], [8], [9], [12], and [15] provide the notation and terminology for this paper.

1. Cardinal Numbers of $\mathbb Z$ and $\mathbb Q$

In this paper k is a natural number, r is a real number, i is an integer, and q is a rational number. The subset \mathbb{Z}_- of \mathbb{R} is defined by:

(Def. 1) $r \in \mathbb{Z}_-$ iff there exists k such that r = -k.

Let us note that \mathbb{Z}_{-} is non empty.

The following three propositions are true:

- (1) $\mathbb{N} \approx \mathbb{Z}_-$.
- (2) $\mathbb{Z} = \mathbb{Z}_- \cup \mathbb{N}$.
- (3) $\mathbb{N} \approx \mathbb{Z}$.

 \mathbb{Z} is a subset of \mathbb{R} .

Let *n* be a natural number. The functor $\mathbb{Q}(n)$ yielding a subset of \mathbb{Q} is defined by:

(Def. 2) $q \in \mathbb{Q}(n)$ iff there exists i such that $q = \frac{i}{n}$.

Let *n* be a natural number. One can verify that $\mathbb{Q}(n+1)$ is non empty. We now state two propositions:

- (4) For every natural number n holds $\mathbb{Z} \approx \mathbb{Q}(n+1)$.
- (5) $\mathbb{N} \approx \mathbb{Q}$.

2. BASIC OPERATIONS OF EXTENDED REAL VALUED FUNCTIONS

Let C be a non empty set, let f be a partial function from C to $\overline{\mathbb{R}}$, and let x be a set. Then f(x) is an extended real number.

Let C be a non empty set and let f_1 , f_2 be partial functions from C to $\overline{\mathbb{R}}$. The functor $f_1 + f_2$ yields a partial function from C to $\overline{\mathbb{R}}$ and is defined by:

(Def. 3) $\operatorname{dom}(f_1 + f_2) = \operatorname{dom} f_1 \cap \operatorname{dom} f_2 \setminus (f_1^{-1}(\{-\infty\}) \cap f_2^{-1}(\{+\infty\}) \cup f_1^{-1}(\{+\infty\}) \cap f_2^{-1}(\{-\infty\}))$ and for every element $c \in \operatorname{dom}(f_1 + f_2)$ holds $(f_1 + f_2)(c) = f_1(c) + f_2(c)$.

The functor $f_1 - f_2$ yields a partial function from C to $\overline{\mathbb{R}}$ and is defined by:

(Def. 4) $\operatorname{dom}(f_1 - f_2) = \operatorname{dom} f_1 \cap \operatorname{dom} f_2 \setminus (f_1^{-1}(\{+\infty\}) \cap f_2^{-1}(\{+\infty\}) \cup f_1^{-1}(\{-\infty\}) \cap f_2^{-1}(\{-\infty\}))$ and for every element c of C such that $c \in \operatorname{dom}(f_1 - f_2)$ holds $(f_1 - f_2)(c) = f_1(c) - f_2(c)$.

The functor f_1 f_2 yielding a partial function from C to $\overline{\mathbb{R}}$ is defined by:

(Def. 5) $\operatorname{dom}(f_1 f_2) = \operatorname{dom} f_1 \cap \operatorname{dom} f_2$ and for every element c of C such that $c \in \operatorname{dom}(f_1 f_2)$ holds $(f_1 f_2)(c) = f_1(c) \cdot f_2(c)$.

Let C be a non empty set, let f be a partial function from C to $\overline{\mathbb{R}}$, and let r be a real number. The functor r f yielding a partial function from C to $\overline{\mathbb{R}}$ is defined as follows:

(Def. 6) $\operatorname{dom}(rf) = \operatorname{dom} f$ and for every element c of C such that $c \in \operatorname{dom}(rf)$ holds $(rf)(c) = \overline{\mathbb{R}}(r) \cdot f(c)$.

We now state the proposition

(6) Let C be a non empty set, f be a partial function from C to $\overline{\mathbb{R}}$, and r be a real number. Suppose $r \neq 0$. Let c be an element of C. If $c \in \text{dom}(r f)$, then $f(c) = \frac{(r f)(c)}{\overline{\mathbb{R}}(r)}$.

Let C be a non empty set and let f be a partial function from C to $\overline{\mathbb{R}}$. The functor -f yields a partial function from C to $\overline{\mathbb{R}}$ and is defined as follows:

(Def. 7) dom(-f) = dom f and for every element c of C such that $c \in dom(-f)$ holds (-f)(c) = -f(c).

The extended real number $\overline{1}$ is defined by:

(Def. 8) $\bar{1} = 1$.

Let C be a non empty set, let f be a partial function from C to $\overline{\mathbb{R}}$, and let r be a real number. The functor $\frac{r}{f}$ yields a partial function from C to $\overline{\mathbb{R}}$ and is defined by:

(Def. 9) $\operatorname{dom}(\frac{r}{f}) = \operatorname{dom} f \setminus f^{-1}(\{0_{\mathbb{R}}\})$ and for every element c of C such that $c \in \operatorname{dom}(\frac{r}{f})$ holds $(\frac{r}{f})(c) = \frac{\mathbb{R}(r)}{f(c)}$.

Next we state the proposition

(7) Let C be a non empty set and f be a partial function from C to $\overline{\mathbb{R}}$. Then $\mathrm{dom}(\frac{1}{f}) = \mathrm{dom}\, f \setminus f^{-1}(\{0_{\overline{\mathbb{R}}}\})$ and for every element c of C such that $c \in \mathrm{dom}(\frac{1}{f})$ holds $(\frac{1}{f})(c) = \frac{\overline{1}}{f(c)}$.

Let C be a non empty set and let f be a partial function from C to $\overline{\mathbb{R}}$. The functor |f| yielding a partial function from C to $\overline{\mathbb{R}}$ is defined by:

- (Def. 10) $\operatorname{dom} |f| = \operatorname{dom} f$ and for every element c of C such that $c \in \operatorname{dom} |f|$ holds |f|(c) = |f(c)|. Next we state two propositions:
 - (9)¹ For every non empty set C and for all partial functions f_1 , f_2 from C to $\overline{\mathbb{R}}$ holds $f_1 + f_2 = f_2 + f_1$.
 - (10) For every non empty set C and for all partial functions f_1 , f_2 from C to $\overline{\mathbb{R}}$ holds f_1 $f_2 = f_2$ f_1 .

Let C be a non empty set and let f_1 , f_2 be partial functions from C to $\overline{\mathbb{R}}$. Let us notice that the functor $f_1 + f_2$ is commutative. Let us note that the functor f_1 f_2 is commutative.

¹ The proposition (8) has been removed.

3. Level Sets

Next we state several propositions:

- (11) For every real number r there exists a natural number n such that $r \le n$.
- (12) For every real number r there exists a natural number n such that $-n \le r$.
- (13) For all real numbers r, s such that r < s there exists a natural number n such that $\frac{1}{n+1} < s r$.
- (14) For all real numbers r, s such that for every natural number n holds $r \frac{1}{n+1} \le s$ holds $r \le s$.
- (15) For every extended real number a such that for every real number r holds $\overline{\mathbb{R}}(r) < a$ holds $a = +\infty$.
- (16) For every extended real number a such that for every real number r holds $a < \overline{\mathbb{R}}(r)$ holds $a = -\infty$.

Let X be a set, let S be a σ -field of subsets of X, and let A be a set. We say that A is measurable on S if and only if:

(Def. 11) $A \in S$.

Next we state the proposition

(17) Let X, A be sets and S be a σ -field of subsets of X. Then A is measurable on S if and only if for every σ -measure M on S holds A is measurable w.r.t. M.

For simplicity, we adopt the following convention: X is a non empty set, x is an element of X, f, g are partial functions from X to $\overline{\mathbb{R}}$, S is a σ -field of subsets of X, F is a function from \mathbb{N} into S, A is a set, a is an extended real number, r, s are real numbers, and n is a natural number.

Let us consider X, f, a. The functor LE-dom(f,a) yields a subset of X and is defined as follows:

(Def. 12) $x \in \text{LE-dom}(f, a)$ iff $x \in \text{dom } f$ and there exists an extended real number y such that y = f(x) and y < a.

The functor LEQ-dom(f,a) yields a subset of X and is defined as follows:

(Def. 13) $x \in \text{LEQ-dom}(f, a)$ iff $x \in \text{dom } f$ and there exists an extended real number y such that y = f(x) and $y \le a$.

The functor GT-dom(f, a) yielding a subset of X is defined by:

(Def. 14) $x \in \text{GT-dom}(f, a)$ iff $x \in \text{dom } f$ and there exists an extended real number y such that y = f(x) and a < y.

The functor GTE-dom(f,a) yielding a subset of X is defined by:

(Def. 15) $x \in \text{GTE-dom}(f, a)$ iff $x \in \text{dom } f$ and there exists an extended real number y such that y = f(x) and $a \le y$.

The functor EQ-dom(f, a) yields a subset of X and is defined by:

(Def. 16) $x \in \text{EQ-dom}(f, a)$ iff $x \in \text{dom } f$ and there exists an extended real number y such that y = f(x) and a = y.

One can prove the following propositions:

- (18) For all X, S, f, A, a such that $A \subseteq \text{dom } f \text{ holds } A \cap \text{GTE-dom}(f, a) = A \setminus A \cap \text{LE-dom}(f, a)$.
- (19) For all X, S, f, A, a such that $A \subseteq \text{dom } f$ holds $A \cap \text{GT-dom}(f, a) = A \setminus A \cap \text{LEQ-dom}(f, a)$.
- (20) For all X, S, f, A, a such that $A \subseteq \text{dom } f$ holds $A \cap \text{LEQ-dom}(f, a) = A \setminus A \cap \text{GT-dom}(f, a)$.

- (21) For all X, S, f, A, a such that $A \subseteq \text{dom } f$ holds $A \cap \text{LE-dom}(f, a) = A \setminus A \cap \text{GTE-dom}(f, a)$.
- (22) For all X, S, f, A, a holds $A \cap EQ$ -dom $(f, a) = A \cap GTE$ -dom $(f, a) \cap LEQ$ -dom(f, a).
- (23) For all X, S, F, f, A, r such that for every n holds $F(n) = A \cap \text{GT-dom}(f, \overline{\mathbb{R}}(r \frac{1}{n+1}))$ holds $A \cap \text{GTE-dom}(f, \overline{\mathbb{R}}(r)) = \bigcap \text{rng } F$.
- (24) For all X, S, F, f, A and for every real number r such that for every n holds $F(n) = A \cap LE\text{-dom}(f, \overline{\mathbb{R}}(r + \frac{1}{n+1}))$ holds $A \cap LEQ\text{-dom}(f, \overline{\mathbb{R}}(r)) = \bigcap rng F$.
- (25) For all X, S, F, f, A and for every real number r such that for every n holds $F(n) = A \cap \text{LEQ-dom}(f, \overline{\mathbb{R}}(r \frac{1}{n+1}))$ holds $A \cap \text{LE-dom}(f, \overline{\mathbb{R}}(r)) = \bigcup \text{rng } F$.
- (26) For all X, S, F, f, A, r such that for every n holds $F(n) = A \cap \text{GTE-dom}(f, \overline{\mathbb{R}}(r + \frac{1}{n+1}))$ holds $A \cap \text{GT-dom}(f, \overline{\mathbb{R}}(r)) = \bigcup \text{rng } F$.
- (27) For all X, S, F, f, A such that for every n holds $F(n) = A \cap \operatorname{GT-dom}(f, \overline{\mathbb{R}}(n))$ holds $A \cap \operatorname{EQ-dom}(f, +\infty) = \bigcap \operatorname{rng} F$.
- (28) For all X, S, F, f, A such that for every n holds $F(n) = A \cap LE\text{-dom}(f, \overline{\mathbb{R}}(n))$ holds $A \cap LE\text{-dom}(f, +\infty) = \bigcup \operatorname{Ing} F$.
- (29) For all X, S, F, f, A such that for every n holds $F(n) = A \cap LE\text{-dom}(f, \overline{\mathbb{R}}(-n))$ holds $A \cap EQ\text{-dom}(f, -\infty) = \bigcap rng F$.
- (30) For all X, S, F, f, A such that for every n holds $F(n) = A \cap \operatorname{GT-dom}(f, \overline{\mathbb{R}}(-n))$ holds $A \cap \operatorname{GT-dom}(f, -\infty) = \bigcup \operatorname{rng} F$.

4. MEASURABLE FUNCTIONS

Let X be a non empty set, let S be a σ -field of subsets of X, let f be a partial function from X to $\overline{\mathbb{R}}$, and let A be an element of S. We say that f is measurable on A if and only if:

(Def. 17) For every real number r holds $A \cap LE$ -dom $(f, \overline{\mathbb{R}}(r))$ is measurable on S.

In the sequel *A*, *B* denote elements of *S*. The following propositions are true:

- (31) Let given X, S, f, A. Suppose $A \subseteq \text{dom } \underline{f}$. Then f is measurable on A if and only if for every real number r holds $A \cap \text{GTE-dom}(f, \overline{\mathbb{R}}(r))$ is measurable on S.
- (32) Let given X, S, f, A. Then f is measurable on A if and only if for every real number r holds $A \cap \text{LEQ-dom}(f, \overline{\mathbb{R}}(r))$ is measurable on S.
- (33) Let given X, S, f, A. Suppose $A \subseteq \text{dom } f$. Then f is measurable on A if and only if for every real number f holds f hold
- (34) For all X, S, f, A, B such that $B \subseteq A$ and f is measurable on A holds f is measurable on B.
- (35) For all X, S, f, A, B such that f is measurable on A and f is measurable on B holds f is measurable on $A \cup B$.
- (36) For all X, S, f, A, r, s such that f is measurable on A and $A \subseteq \text{dom } f$ holds $A \cap \text{GT-dom}(f, \overline{\mathbb{R}}(r)) \cap \text{LE-dom}(f, \overline{\mathbb{R}}(s))$ is measurable on S.
- (37) For all X, S, f, A such that f is measurable on A and $A \subseteq \text{dom } f$ holds $A \cap \text{EQ-dom}(f, +\infty)$ is measurable on S.
- (38) For all X, S, f, A such that f is measurable on A holds $A \cap \text{EQ-dom}(f, -\infty)$ is measurable on S.

- (39) For all X, S, f, A such that f is measurable on A and $A \subseteq \text{dom } f$ holds $A \cap \text{GT-dom}(f, -\infty) \cap \text{LE-dom}(f, +\infty)$ is measurable on S.
- (40) Let given X, S, f, g, A, r. Suppose f is measurable on A and g is measurable on A and $A \subseteq \text{dom } g$. Then $A \cap \text{LE-dom}(f, \overline{\mathbb{R}}(r)) \cap \text{GT-dom}(g, \overline{\mathbb{R}}(r))$ is measurable on S.
- (41) For all X, S, f, A, r such that f is measurable on A and $A \subseteq \text{dom } f$ holds r f is measurable on A.

REFERENCES

- [1] Grzegorz Bancerek. Cardinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/card_1.html.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/nat_1.html.
- [3] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinall. html.
- [4] Grzegorz Bancerek. Countable sets and Hessenberg's theorem. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/ JFM/Vol2/card_4.html.
- [5] Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/supinf_1.html.
- [6] Józef Białas. Series of positive real numbers. Measure theory. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/supinf_2.html.
- [7] Józef Białas. The σ-additive measure theory. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/measurel.
- [8] Józef Białas. Several properties of the σ-additive measure. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/measure2.html.
- [9] Józef Białas. Completeness of the σ-additive measure. Measure theory. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/measure3.html.
- [10] Józef Białas. Some properties of the intervals. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/measure6.
- [11] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [12] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [13] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc 1.html.
- [14] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finset_1.html.
- [15] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Basic properties of extended real numbers. *Journal of Formalized Mathematics*, 12, 2000. http://mizar.org/JFM/Vol12/extreal1.html.
- [16] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/real_1.html.
- [17] Andrzej Kondracki. Basic properties of rational numbers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/rat_1.html.
- [18] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [19] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [20] Michał J. Trybulec. Integers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/int_1.html.
- [21] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.

[22] Edmund Woronowicz. Relations and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

Received September 7, 2000

Published January 2, 2004