On the Sets Inhabited by Numbers¹

Andrzej Trybulec University of Białystok

Summary. The information that all members of a set enjoy a property expressed by an adjective can be processed in a systematic way. The purpose of the work is to find out how to do that. If it works, 'membered' will become a reserved word and the work with it will be automated. I have chosen *membered* rather than *inhabited* because of the compatibility with the Automath terminology. The phrase τ *inhabits* θ could be translated to τ *is* θ in Mizar.

MML Identifier: MEMBERED.

WWW: http://mizar.org/JFM/Vol15/membered.html

The articles [5], [8], [4], [6], [3], [7], [1], and [2] provide the notation and terminology for this paper.

In this paper x, X, F are sets.

Let *X* be a set. We say that *X* is complex-membered if and only if:

(Def. 1) If $x \in X$, then x is complex.

We say that *X* is real-membered if and only if:

(Def. 2) If $x \in X$, then x is real.

We say that *X* is rational-membered if and only if:

(Def. 3) If $x \in X$, then x is rational.

We say that *X* is integer-membered if and only if:

(Def. 4) If $x \in X$, then x is integer.

We say that *X* is natural-membered if and only if:

(Def. 5) If $x \in X$, then x is natural.

One can verify the following observations:

- * every set which is natural-membered is also integer-membered,
- * every set which is integer-membered is also rational-membered,
- * every set which is rational-membered is also real-membered, and
- * every set which is real-membered is also complex-membered.

Let us observe that there exists a set which is non empty and natural-membered. One can check the following observations:

 $^{^{1}\}mathrm{This}$ work has been partially supported by the CALCULEMUS grant HPRN-CT-2000-00102.

- * every subset of \mathbb{C} is complex-membered,
- * every subset of \mathbb{R} is real-membered,
- * every subset of Q is rational-membered,
- * every subset of $\mathbb Z$ is integer-membered, and
- * every subset of \mathbb{N} is natural-membered.

One can verify the following observations:

- * \mathbb{C} is complex-membered,
- * \mathbb{R} is real-membered,
- * Q is rational-membered,
- * \mathbb{Z} is integer-membered, and
- * N is natural-membered.

We now state several propositions:

- (1) If *X* is complex-membered, then $X \subseteq \mathbb{C}$.
- (2) If *X* is real-membered, then $X \subseteq \mathbb{R}$.
- (3) If *X* is rational-membered, then $X \subseteq \mathbb{Q}$.
- (4) If *X* is integer-membered, then $X \subseteq \mathbb{Z}$.
- (5) If *X* is natural-membered, then $X \subseteq \mathbb{N}$.

Let *X* be a complex-membered set. Note that every element of *X* is complex.

- Let *X* be a real-membered set. Observe that every element of *X* is real.
- Let *X* be a rational-membered set. Note that every element of *X* is rational.
- Let *X* be an integer-membered set. Observe that every element of *X* is integer.
- Let *X* be a natural-membered set. Observe that every element of *X* is natural.

For simplicity, we adopt the following convention: c, c_1 , c_2 , c_3 denote complex numbers, r, r_1 , r_2 , r_3 denote real numbers, w, w_1 , w_2 , w_3 denote rational numbers, i, i_1 , i_2 , i_3 denote integer numbers, and n, n_1 , n_2 , n_3 denote natural numbers.

Next we state a number of propositions:

- (6) For every non empty complex-membered set X there exists c such that $c \in X$.
- (7) For every non empty real-membered set X there exists r such that $r \in X$.
- (8) For every non empty rational-membered set *X* there exists *w* such that $w \in X$.
- (9) For every non empty integer-membered set X there exists i such that $i \in X$.
- (10) For every non empty natural-membered set *X* there exists *n* such that $n \in X$.
- (11) For every complex-membered set *X* such that for every *c* holds $c \in X$ holds $X = \mathbb{C}$.
- (12) For every real-membered set *X* such that for every *r* holds $r \in X$ holds $X = \mathbb{R}$.
- (13) For every rational-membered set *X* such that for every *w* holds $w \in X$ holds $X = \mathbb{Q}$.
- (14) For every integer-membered set *X* such that for every *i* holds $i \in X$ holds $X = \mathbb{Z}$.
- (15) For every natural-membered set *X* such that for every *n* holds $n \in X$ holds $X = \mathbb{N}$.
- (16) For every complex-membered set *Y* such that $X \subseteq Y$ holds *X* is complex-membered.

- (17) For every real-membered set *Y* such that $X \subseteq Y$ holds *X* is real-membered.
- (18) For every rational-membered set *Y* such that $X \subseteq Y$ holds *X* is rational-membered.
- (19) For every integer-membered set *Y* such that $X \subseteq Y$ holds *X* is integer-membered.
- (20) For every natural-membered set *Y* such that $X \subseteq Y$ holds *X* is natural-membered.

Let us observe that \emptyset is natural-membered.

One can verify that every set which is empty is also natural-membered.

Let us consider c. Observe that $\{c\}$ is complex-membered.

Let us consider r. Note that $\{r\}$ is real-membered.

Let us consider w. Note that $\{w\}$ is rational-membered.

Let us consider i. One can check that $\{i\}$ is integer-membered.

Let us consider n. Observe that $\{n\}$ is natural-membered.

Let us consider c_1, c_2 . Observe that $\{c_1, c_2\}$ is complex-membered.

Let us consider r_1 , r_2 . One can check that $\{r_1, r_2\}$ is real-membered.

Let us consider w_1 , w_2 . One can check that $\{w_1, w_2\}$ is rational-membered.

Let us consider i_1 , i_2 . Note that $\{i_1, i_2\}$ is integer-membered.

Let us consider n_1 , n_2 . Note that $\{n_1, n_2\}$ is natural-membered.

Let us consider c_1, c_2, c_3 . One can verify that $\{c_1, c_2, c_3\}$ is complex-membered.

Let us consider r_1 , r_2 , r_3 . One can verify that $\{r_1, r_2, r_3\}$ is real-membered.

Let us consider w_1, w_2, w_3 . Note that $\{w_1, w_2, w_3\}$ is rational-membered.

Let us consider i_1 , i_2 , i_3 . Note that $\{i_1, i_2, i_3\}$ is integer-membered.

Let us consider n_1 , n_2 , n_3 . Observe that $\{n_1, n_2, n_3\}$ is natural-membered.

Let X be a complex-membered set. Note that every subset of X is complex-membered.

Let *X* be a real-membered set. Note that every subset of *X* is real-membered.

Let *X* be a rational-membered set. Observe that every subset of *X* is rational-membered.

Let *X* be an integer-membered set. Observe that every subset of *X* is integer-membered.

Let *X* be a natural-membered set. One can verify that every subset of *X* is natural-membered.

Let X, Y be complex-membered sets. Observe that $X \cup Y$ is complex-membered.

Let X, Y be real-membered sets. One can verify that $X \cup Y$ is real-membered.

Let X, Y be rational-membered sets. Note that $X \cup Y$ is rational-membered.

Let X, Y be integer-membered sets. One can verify that $X \cup Y$ is integer-membered.

Let X, Y be natural-membered sets. Observe that $X \cup Y$ is natural-membered.

Let X be a complex-membered set and let Y be a set. One can check that $X \cap Y$ is complex-membered and $Y \cap X$ is complex-membered.

Let *X* be a real-membered set and let *Y* be a set. One can check that $X \cap Y$ is real-membered and $Y \cap X$ is real-membered.

Let X be a rational-membered set and let Y be a set. One can check that $X \cap Y$ is rational-membered and $Y \cap X$ is rational-membered.

Let X be an integer-membered set and let Y be a set. One can verify that $X \cap Y$ is integer-membered and $Y \cap X$ is integer-membered.

Let *X* be a natural-membered set and let *Y* be a set. Observe that $X \cap Y$ is natural-membered and $Y \cap X$ is natural-membered.

Let X be a complex-membered set and let Y be a set. Observe that $X \setminus Y$ is complex-membered.

Let *X* be a real-membered set and let *Y* be a set. One can check that $X \setminus Y$ is real-membered.

Let *X* be a rational-membered set and let *Y* be a set. Observe that $X \setminus Y$ is rational-membered.

Let *X* be an integer-membered set and let *Y* be a set. Observe that $X \setminus Y$ is integer-membered.

Let X be a natural-membered set and let Y be a set. One can verify that $X \setminus Y$ is natural-membered.

Let X, Y be complex-membered sets. One can check that X - Y is complex-membered.

Let *X*, *Y* be real-membered sets. Observe that X = Y is real-membered.

Let X, Y be rational-membered sets. Note that X = Y is rational-membered.

Let X, Y be integer-membered sets. Observe that X = Y is integer-membered.

Let X, Y be natural-membered sets. Observe that X = Y is natural-membered.

Let *X*, *Y* be complex-membered sets. Let us observe that $X \subseteq Y$ if and only if:

(Def. 6) If $c \in X$, then $c \in Y$.

Let X, Y be real-membered sets. Let us observe that $X \subseteq Y$ if and only if:

(Def. 7) If $r \in X$, then $r \in Y$.

Let *X*, *Y* be rational-membered sets. Let us observe that $X \subseteq Y$ if and only if:

(Def. 8) If $w \in X$, then $w \in Y$.

Let X, Y be integer-membered sets. Let us observe that $X \subseteq Y$ if and only if:

(Def. 9) If $i \in X$, then $i \in Y$.

Let X, Y be natural-membered sets. Let us observe that $X \subseteq Y$ if and only if:

(Def. 10) If $n \in X$, then $n \in Y$.

Let X, Y be complex-membered sets. Let us observe that X = Y if and only if:

(Def. 11) $c \in X$ iff $c \in Y$.

Let X, Y be real-membered sets. Let us observe that X = Y if and only if:

(Def. 12) $r \in X$ iff $r \in Y$.

Let X, Y be rational-membered sets. Let us observe that X = Y if and only if:

(Def. 13) $w \in X$ iff $w \in Y$.

Let X, Y be integer-membered sets. Let us observe that X = Y if and only if:

(Def. 14) $i \in X$ iff $i \in Y$.

Let X, Y be natural-membered sets. Let us observe that X = Y if and only if:

(Def. 15) $n \in X$ iff $n \in Y$.

Let *X*, *Y* be complex-membered sets. Let us observe that *X* meets *Y* if and only if:

(Def. 16) There exists c such that $c \in X$ and $c \in Y$.

Let *X*, *Y* be real-membered sets. Let us observe that *X* meets *Y* if and only if:

(Def. 17) There exists r such that $r \in X$ and $r \in Y$.

Let X, Y be rational-membered sets. Let us observe that X meets Y if and only if:

(Def. 18) There exists w such that $w \in X$ and $w \in Y$.

Let X, Y be integer-membered sets. Let us observe that X meets Y if and only if:

(Def. 19) There exists i such that $i \in X$ and $i \in Y$.

Let *X*, *Y* be natural-membered sets. Let us observe that *X* meets *Y* if and only if:

(Def. 20) There exists n such that $n \in X$ and $n \in Y$.

We now state a number of propositions:

- (21) If for every X such that $X \in F$ holds X is complex-membered, then $\bigcup F$ is complex-membered.
- (22) If for every X such that $X \in F$ holds X is real-membered, then $\bigcup F$ is real-membered.
- (23) If for every X such that $X \in F$ holds X is rational-membered, then $\bigcup F$ is rational-membered.

- (24) If for every X such that $X \in F$ holds X is integer-membered, then $\bigcup F$ is integer-membered.
- (25) If for every *X* such that $X \in F$ holds *X* is natural-membered, then $\bigcup F$ is natural-membered.
- (26) For every *X* such that $X \in F$ and *X* is complex-membered holds $\bigcap F$ is complex-membered.
- (27) For every *X* such that $X \in F$ and *X* is real-membered holds $\bigcap F$ is real-membered.
- (28) For every X such that $X \in F$ and X is rational-membered holds $\bigcap F$ is rational-membered.
- (29) For every X such that $X \in F$ and X is integer-membered holds $\bigcap F$ is integer-membered.
- (30) For every X such that $X \in F$ and X is natural-membered holds $\bigcap F$ is natural-membered.

In this article we present several logical schemes. The scheme *CM Separation* concerns a unary predicate \mathcal{P} , and states that:

There exists a complex-membered set X such that for every c holds $c \in X$ iff $\mathcal{P}[c]$ for all values of the parameters.

The scheme RM Separation concerns a unary predicate \mathcal{P} , and states that:

There exists a real-membered set X such that for every r holds $r \in X$ iff $\mathcal{P}[r]$ for all values of the parameters.

The scheme WM Separation concerns a unary predicate \mathcal{P} , and states that:

There exists a rational-membered set X such that for every w holds $w \in X$ iff $\mathcal{P}[w]$ for all values of the parameters.

The scheme *IM Separation* concerns a unary predicate \mathcal{P} , and states that:

There exists an integer-membered set X such that for every i holds $i \in X$ iff $\mathcal{P}[i]$ for all values of the parameters.

The scheme *NM Separation* concerns a unary predicate \mathcal{P} , and states that:

There exists a natural-membered set X such that for every n holds $n \in X$ iff $\mathcal{P}[n]$ for all values of the parameters.

ACKNOWLEDGMENTS

I am grateful to Dr. Czeslaw Bylinski for the discussion, particularly for his advice to prove more trivial but useful theorems.

REFERENCES

- [1] Grzegorz Bancerek. The ordinal numbers. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/ordinall.html.
- [2] Grzegorz Bancerek. Sequences of ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinal2.html.
- [3] Andrzej Kondracki. Basic properties of rational numbers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vo12/rat 1.html.
- [4] Beata Padlewska. Families of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/setfam_1.html.
- [5] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [6] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [7] Michał J. Trybulec. Integers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/int_1.html.

 $\textbf{[8]} \ \ \textbf{Zinaida Trybulec. Properties of subsets.} \ \textit{Journal of Formalized Mathematics}, \textbf{1, 1989}. \ \texttt{http://mizar.org/JFM/Vol1/subset_1.html}.$

Received August 23, 2003

Published January 2, 2004