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Summary. In the first part of this article I have proved theorems about boolean of
many sorted sets which are corresponded to theorems about boolean of sets, whereas the
second part of this article contains propositions about union of many sorted sets. Boolean as
well as union of many sorted sets are defined as boolean and union on every sorts.

MML Identifier: MBOOLEAN.

WWW: http://mizar.org/JFM/Vol7/mboolean.html

The articles [9], [3], [11], [1], [2], [5], [4], [10], [7], [6], and [8] provide the notation and terminol-
ogy for this paper.

1. BOOLEAN OF MANY SORTED SETS

We adopt the following rules:x, y, I denote sets andA, B, X, Y denote many sorted sets indexed by
I .

Let us considerI , A. The functor 2A yielding a many sorted set indexed byI is defined by:

(Def. 1) For every seti such thati ∈ I holds 2A(i) = 2A(i).

Let us considerI , A. Note that 2A is non-empty.
Next we state a number of propositions:

(1) X = 2Y iff for every A holdsA∈ X iff A⊆Y.

(2) 20I = I 7−→ { /0}.

(3) 2I 7−→x = I 7−→ 2x.

(4) 2I 7−→{x} = I 7−→ { /0,{x}}.

(5) 0I ⊆ A.

(6) If A⊆ B, then 2A ⊆ 2B.

(7) 2A∪2B ⊆ 2A∪B.

(8) If 2A∪2B = 2A∪B, then for every seti such thati ∈ I holdsA(i) andB(i) are⊆-comparable.

(9) 2A∩B = 2A∩2B.
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(10) 2A\B ⊆ (I 7−→ { /0})∪ (2A\2B).

(11) X ⊆ A\B iff X ⊆ A andX missesB.

(12) 2A\B∪2B\A ⊆ 2A−. B.

(13) X ⊆ A−. B iff X ⊆ A∪B andX missesA∩B.

(15)1 If X ⊆ A or Y ⊆ A, thenX∩Y ⊆ A.

(16) If X ⊆ A, thenX \Y ⊆ A.

(17) If X ⊆ A andY ⊆ A, thenX−. Y ⊆ A.

(18) [[X,Y]]⊆ 22X∪Y
.

(19) X ⊆ A iff X ∈ 2A.

(20) MSFuncs(A,B)⊆ 2[[A,B]].

2. UNION OF MANY SORTED SETS

Let us considerI , A. The functor
⋃

A yielding a many sorted set indexed byI is defined by:

(Def. 2) For every seti such thati ∈ I holds(
⋃

A)(i) =
⋃

A(i).

Let us considerI . Note that
⋃

(0I ) is empty yielding.
Next we state a number of propositions:

(21) A∈
⋃

X iff there existsY such thatA∈Y andY ∈ X.

(22)
⋃

(0I ) = 0I .

(23)
⋃

(I 7−→ x) = I 7−→
⋃

x.

(24)
⋃

(I 7−→ {x}) = I 7−→ x.

(25)
⋃

(I 7−→ {{x},{y}}) = I 7−→ {x,y}.

(26) If X ∈ A, thenX ⊆
⋃

A.

(27) If A⊆ B, then
⋃

A⊆
⋃

B.

(28)
⋃

(A∪B) =
⋃

A∪
⋃

B.

(29)
⋃

(A∩B)⊆
⋃

A∩
⋃

B.

(30)
⋃

(2A) = A.

(31) A⊆ 2
⋃

A.

(32) If
⋃

Y ⊆ A andX ∈Y, thenX ⊆ A.

(33) LetZ be a many sorted set indexed byI andA be a non-empty many sorted set indexed by
I . Suppose that for every many sorted setX indexed byI such thatX ∈ A holdsX ⊆ Z. Then⋃

A⊆ Z.

(34) LetB be a many sorted set indexed byI andA be a non-empty many sorted set indexed by
I . Suppose that for every many sorted setX indexed byI such thatX ∈ A holdsX∩B = 0I .
Then

⋃
A∩B = 0I .

(35) LetA, B be many sorted sets indexed byI . SupposeA∪B is non-empty. Suppose that for
all many sorted setsX, Y indexed byI such thatX 6= Y andX ∈ A∪B andY ∈ A∪B holds
X∩Y = 0I . Then

⋃
(A∩B) =

⋃
A∩

⋃
B.

1 The proposition (14) has been removed.
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(36) LetA, X be many sorted sets indexed byI andB be a non-empty many sorted set indexed
by I . SupposeX ⊆

⋃
(A∪B) and for every many sorted setY indexed byI such thatY ∈ B

holdsY∩X = 0I . ThenX ⊆
⋃

A.

(37) LetA be a locally-finite non-empty many sorted set indexed byI . Suppose that for all many
sorted setsX, Y indexed byI such thatX ∈A andY ∈A holdsX ⊆Y orY⊆X. Then

⋃
A∈A.
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