Some Properties of Real Maps

Adam Grabowski University of Białystok Yatsuka Nakamura Shinshu University Nagano

Summary. The main goal of the paper is to show logical equivalence of the two definitions of the *open subset*: one from [3] and the other from [21]. This has been used to show that the other two definitions are equivalent: the continuity of the map as in [19] and in [20]. We used this to show that continuous and one-to-one maps are monotone (see theorems 16 and 17 for details).

MML Identifier: JORDAN5A.

WWW: http://mizar.org/JFM/Vol9/jordan5a.html

The articles [22], [24], [1], [23], [14], [25], [26], [5], [6], [20], [11], [4], [21], [7], [17], [15], [18], [12], [19], [9], [8], [10], [16], [3], [2], and [13] provide the notation and terminology for this paper.

1. Preliminaries

One can prove the following four propositions:

- (1) Let n be a natural number, p, q be points of \mathcal{E}_T^n , and P be a subset of \mathcal{E}_T^n . If P is an arc from p to q, then P is compact.
- (2) For every real number r holds $0 \le r$ and $r \le 1$ iff $r \in$ the carrier of \mathbb{I} .
- (3) Let n be a natural number, p_1 , p_2 be points of \mathcal{E}_T^n , and r_1 , r_2 be real numbers. If $(1-r_1) \cdot p_1 + r_1 \cdot p_2 = (1-r_2) \cdot p_1 + r_2 \cdot p_2$, then $r_1 = r_2$ or $p_1 = p_2$.
- (4) Let n be a natural number and p_1 , p_2 be points of \mathcal{E}_T^n . Suppose $p_1 \neq p_2$. Then there exists a map f from \mathbb{I} into $(\mathcal{E}_T^n) \upharpoonright \mathcal{L}(p_1, p_2)$ such that for every real number x such that $x \in [0, 1]$ holds $f(x) = (1 x) \cdot p_1 + x \cdot p_2$ and f is a homeomorphism and $f(0) = p_1$ and $f(1) = p_2$.

Let *n* be a natural number. Note that \mathcal{E}_{T}^{n} is arcwise connected.

Let n be a natural number. One can check that there exists a subspace of \mathcal{E}_T^n which is compact and non empty.

One can prove the following proposition

(5) Let a, b be points of \mathcal{E}_{T}^{2} , f be a path from a to b, P be a non empty compact subspace of \mathcal{E}_{T}^{2} , and g be a map from \mathbb{I} into P. If f is one-to-one and g = f and $\Omega_{P} = \operatorname{rng} f$, then g is a homeomorphism.

2. Equivalence of analytical and topological definitions of continuity

We now state a number of propositions:

- (6) Let X be a subset of \mathbb{R} . Then $X \in$ the open set family of the metric space of real numbers if and only if X is open.
- (7) Let f be a map from \mathbb{R}^1 into \mathbb{R}^1 , x be a point of \mathbb{R}^1 , g be a partial function from \mathbb{R} to \mathbb{R} , and x_1 be a real number. If f is continuous at x and f = g and $x = x_1$, then g is continuous in x_1 .
- (8) Let f be a continuous map from \mathbb{R}^1 into \mathbb{R}^1 and g be a partial function from \mathbb{R} to \mathbb{R} . If f = g, then g is continuous on \mathbb{R} .
- (9) Let f be a continuous one-to-one map from \mathbb{R}^1 into \mathbb{R}^1 . Then
- (i) for all points x, y of \mathbb{I} and for all real numbers p, q, f_1 , f_2 such that x = p and y = q and p < q and $f_1 = f(x)$ and $f_2 = f(y)$ holds $f_1 < f_2$, or
- (ii) for all points x, y of \mathbb{I} and for all real numbers p, q, f_1 , f_2 such that x = p and y = q and p < q and $f_1 = f(x)$ and $f_2 = f(y)$ holds $f_1 > f_2$.
- (10) Let r, g_1 , a, b be real numbers and x be an element of $[a, b]_M$. If $a \le b$ and x = r and $g_1 > 0$ and $|r g_1, r + g_1| \subseteq [a, b]$, then $|r g_1, r + g_1| = \text{Ball}(x, g_1)$.
- (11) Let a, b be real numbers and X be a subset of \mathbb{R} . Suppose a < b and $a \notin X$ and $b \notin X$. If $X \in$ the open set family of $[a, b]_M$, then X is open.
- (12) For every open subset X of \mathbb{R} and for all real numbers a, b such that $X \subseteq [a,b]$ holds $a \notin X$ and $b \notin X$.
- (13) Let a, b be real numbers, X be a subset of \mathbb{R} , and V be a subset of $[a, b]_M$. Suppose $a \le b$ and V = X. If X is open, then $V \in$ the open set family of $[a, b]_M$.
- (14) Let a, b, c, d, x_1 be real numbers, f be a map from $[a, b]_T$ into $[c, d]_T$, x be a point of $[a, b]_T$, and g be a partial function from \mathbb{R} to \mathbb{R} . Suppose a < b and c < d and f is continuous at x and f(a) = c and f(b) = d and f is one-to-one and f = g and $x = x_1$. Then $g \upharpoonright [a, b]$ is continuous in x_1 .
- (15) Let a, b, c, d be real numbers, f be a map from $[a, b]_T$ into $[c, d]_T$, and g be a partial function from \mathbb{R} to \mathbb{R} . Suppose f is continuous and one-to-one and a < b and c < d and f = g and f(a) = c and f(b) = d. Then g is continuous on [a, b].

3. On the monotonicity of continuous maps

Next we state several propositions:

- (16) Let a, b, c, d be real numbers and f be a map from $[a, b]_T$ into $[c, d]_T$. Suppose a < b and c < d and f is continuous and one-to-one and f(a) = c and f(b) = d. Let x, y be points of $[a, b]_T$ and p, q, f_1, f_2 be real numbers. If x = p and y = q and p < q and $f_1 = f(x)$ and $f_2 = f(y)$, then $f_1 < f_2$.
- (17) Let f be a continuous one-to-one map from \mathbb{I} into \mathbb{I} . Suppose f(0) = 0 and f(1) = 1. Let x, y be points of \mathbb{I} and p, q, f_1 , f_2 be real numbers. If x = p and y = q and p < q and $f_1 = f(x)$ and $f_2 = f(y)$, then $f_1 < f_2$.
- (18) Let a, b, c, d be real numbers, f be a map from $[a, b]_T$ into $[c, d]_T$, P be a non empty subset of $[a, b]_T$, and P_1 , Q_1 be subsets of \mathbb{R}^1 . Suppose a < b and c < d and $P_1 = P$ and f is continuous and one-to-one and P_1 is compact and f(a) = c and f(b) = d and $f^{\circ}P = Q_1$. Then $f(\inf(\Omega_{(P_1)})) = \inf(\Omega_{(Q_1)})$.

- (19) Let a, b, c, d be real numbers, f be a map from $[a, b]_T$ into $[c, d]_T$, P, Q be non empty subsets of $[a, b]_T$, and P_1 , Q_1 be subsets of \mathbb{R}^1 . Suppose a < b and c < d and $P_1 = P$ and $Q_1 = Q$ and f is continuous and one-to-one and P_1 is compact and f(a) = c and f(b) = d and $f^{\circ}P = Q$. Then $f(\sup(\Omega_{(P_1)})) = \sup(\Omega_{(Q_1)})$.
- (20) For all real numbers a, b such that $a \le b$ holds $\inf[a, b] = a$ and $\sup[a, b] = b$.
- (21) Let a, b, c, d, e, f, g, h be real numbers and F be a map from $[a, b]_T$ into $[c, d]_T$. Suppose a < b and c < d and e < f and $a \le e$ and $f \le b$ and F is a homeomorphism and F(a) = c and F(b) = d and F(e) = d and F(e)
- (22) Let P, Q be subsets of \mathcal{E}_T^2 and p_1 , p_2 be points of \mathcal{E}_T^2 . Suppose P meets Q and $P \cap Q$ is closed and P is an arc from p_1 to p_2 . Then there exists a point E_1 of \mathcal{E}_T^2 such that
 - (i) $E_1 \in P \cap Q$, and
 - (ii) there exists a map g from \mathbb{I} into $(\mathcal{E}_T^2) \upharpoonright P$ and there exists a real number s_2 such that g is a homeomorphism and $g(0) = p_1$ and $g(1) = p_2$ and $g(s_2) = E_1$ and $0 \le s_2$ and $s_2 \le 1$ and for every real number t such that $0 \le t$ and $t < s_2$ holds $g(t) \notin Q$.
- (23) Let P, Q be subsets of \mathcal{E}_T^2 and p_1 , p_2 be points of \mathcal{E}_T^2 . Suppose P meets Q and $P \cap Q$ is closed and P is an arc from p_1 to p_2 . Then there exists a point E_1 of \mathcal{E}_T^2 such that
 - (i) $E_1 \in P \cap Q$, and
- (ii) there exists a map g from \mathbb{I} into $(\mathcal{E}_{\mathsf{T}}^2) \upharpoonright P$ and there exists a real number s_2 such that g is a homeomorphism and $g(0) = p_1$ and $g(1) = p_2$ and $g(s_2) = E_1$ and $0 \le s_2$ and $s_2 \le 1$ and for every real number t such that $1 \ge t$ and $t > s_2$ holds $g(t) \notin Q$.

REFERENCES

- Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinall. html.
- [2] Józef Białas and Yatsuka Nakamura. The theorem of Weierstrass. Journal of Formalized Mathematics, 7, 1995. http://mizar.org/ JFM/Vol7/weierstr.html.
- [3] Leszek Borys. Paracompact and metrizable spaces. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/pcomps_1.html.
- [4] Czesław Byliński. Binary operations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/binop_1.html.
- [5] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [6] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [7] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfun1.html.
- [8] Agata Darmochwał. Compact spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/compts_1.html.
- [9] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/tops_2.html.
- [10] Agata Darmochwał. The Euclidean space. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/euclid.html.
- [11] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces fundamental concepts. *Journal of Formalized Mathematics*, 3, 1991. http://mizar.org/JFM/Vol3/topmetr.html.
- [12] Agata Darmochwał and Yatsuka Nakamura. The topological space \(\mathcal{E}_{T}^{2}\). Arcs, line segments and special polygonal arcs. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/topreall.html.
- [13] Adam Grabowski. Introduction to the homotopy theory. Journal of Formalized Mathematics, 9, 1997. http://mizar.org/JFM/Vol9/borsuk_2.html.
- [14] Krzysztof Hryniewiecki. Basic properties of real numbers. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/real 1.html.
- [15] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/metric_1.html.
- [16] Zbigniew Karno. Continuity of mappings over the union of subspaces. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/tmap_1.html.

- [17] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/seq_4.html.
- [18] Beata Padlewska. Locally connected spaces. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/connsp_ 2.html.
- [19] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/pre_topc.html.
- [20] Konrad Raczkowski and Pawel Sadowski. Real function continuity. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/ JFM/Vol2/fcont_1.html.
- [21] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/rcomp_1.html.
- [22] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/
- [23] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [24] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [25] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.
- [26] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relset_l.html.

Received September 10, 1997

Published January 2, 2004