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Summary. The main goal of the paper is to show logical equivalence of the two defi-
nitions of theopen subset: one from [3] and the other from [21]. This has been used to show
that the other two definitions are equivalent: the continuity of the map as in [19] and in [20].
We used this to show that continuous and one-to-one maps are monotone (see theorems 16
and 17 for details).

MML Identifier: JORDAN5A.

WWW: http://mizar.org/JFM/Vol9/jordan5a.html

The articles [22], [24], [1], [23], [14], [25], [26], [5], [6], [20], [11], [4], [21], [7], [17], [15], [18],
[12], [19], [9], [8], [10], [16], [3], [2], and [13] provide the notation and terminology for this paper.

1. PRELIMINARIES

One can prove the following four propositions:

(1) Letn be a natural number,p, q be points ofEn
T, andP be a subset ofEn

T. If P is an arc from
p to q, thenP is compact.

(2) For every real numberr holds 0≤ r andr ≤ 1 iff r ∈ the carrier ofI.

(3) Let n be a natural number,p1, p2 be points ofEn
T, andr1, r2 be real numbers. If(1− r1) ·

p1 + r1 · p2 = (1− r2) · p1 + r2 · p2, thenr1 = r2 or p1 = p2.

(4) Letn be a natural number andp1, p2 be points ofEn
T. Supposep1 6= p2. Then there exists a

map f from I into (En
T)�L(p1, p2) such that for every real numberx such thatx∈ [0,1] holds

f (x) = (1−x) · p1 +x · p2 and f is a homeomorphism andf (0) = p1 and f (1) = p2.

Let n be a natural number. Note thatEn
T is arcwise connected.

Let n be a natural number. One can check that there exists a subspace ofEn
T which is compact

and non empty.
One can prove the following proposition

(5) Let a, b be points ofE2
T, f be a path froma to b, P be a non empty compact subspace of

E2
T, andg be a map fromI into P. If f is one-to-one andg = f andΩP = rng f , theng is a

homeomorphism.
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2. EQUIVALENCE OF ANALYTICAL AND TOPOLOGICAL DEFINITIONS OF CONTINUITY

We now state a number of propositions:

(6) Let X be a subset ofR. ThenX ∈ the open set family of the metric space of real numbers
if and only if X is open.

(7) Let f be a map fromR1 into R1, x be a point ofR1, g be a partial function fromR to R,
andx1 be a real number. Iff is continuous atx and f = g andx = x1, theng is continuous in
x1.

(8) Let f be a continuous map fromR1 into R1 andg be a partial function fromR to R. If
f = g, theng is continuous onR.

(9) Let f be a continuous one-to-one map fromR1 into R1. Then

(i) for all pointsx, y of I and for all real numbersp, q, f1, f2 such thatx = p andy = q and
p < q and f1 = f (x) and f2 = f (y) holds f1 < f2, or

(ii) for all points x, y of I and for all real numbersp, q, f1, f2 such thatx = p andy = q and
p < q and f1 = f (x) and f2 = f (y) holds f1 > f2.

(10) Letr, g1, a, b be real numbers andx be an element of[a, b]M . If a≤ b andx= r andg1 > 0
and]r−g1, r +g1[⊆ [a,b], then]r−g1, r +g1[ = Ball(x,g1).

(11) Leta, b be real numbers andX be a subset ofR. Supposea < b anda /∈ X andb /∈ X. If
X ∈ the open set family of[a, b]M , thenX is open.

(12) For every open subsetX of R and for all real numbersa, b such thatX ⊆ [a,b] holdsa /∈ X
andb /∈ X.

(13) Leta, b be real numbers,X be a subset ofR, andV be a subset of[a, b]M . Supposea≤ b
andV = X. If X is open, thenV ∈ the open set family of[a, b]M .

(14) Leta, b, c, d, x1 be real numbers,f be a map from[a, b]T into [c, d]T, x be a point of[a, b]T,
andg be a partial function fromR to R. Supposea< b andc< d and f is continuous atx and
f (a) = c and f (b) = d and f is one-to-one andf = g andx = x1. Theng�[a,b] is continuous
in x1.

(15) Let a, b, c, d be real numbers,f be a map from[a, b]T into [c, d]T, andg be a partial
function fromR to R. Supposef is continuous and one-to-one anda< b andc< d and f = g
and f (a) = c and f (b) = d. Theng is continuous on[a,b].

3. ON THE MONOTONICITY OF CONTINUOUS MAPS

Next we state several propositions:

(16) Leta, b, c, d be real numbers andf be a map from[a, b]T into [c, d]T. Supposea < b and
c < d and f is continuous and one-to-one andf (a) = c and f (b) = d. Let x, y be points of
[a, b]T and p, q, f1, f2 be real numbers. Ifx = p andy = q and p < q and f1 = f (x) and
f2 = f (y), then f1 < f2.

(17) Let f be a continuous one-to-one map fromI into I. Supposef (0) = 0 and f (1) = 1. Let
x, y be points ofI andp, q, f1, f2 be real numbers. Ifx= p andy= q andp< q and f1 = f (x)
and f2 = f (y), then f1 < f2.

(18) Let a, b, c, d be real numbers,f be a map from[a, b]T into [c, d]T, P be a non empty
subset of[a, b]T, andP1, Q1 be subsets ofR1. Supposea < b andc < d andP1 = P and f
is continuous and one-to-one andP1 is compact andf (a) = c and f (b) = d and f ◦P = Q1.
Then f (inf(Ω(P1))) = inf(Ω(Q1)).



SOME PROPERTIES OF REAL MAPS 3

(19) Let a, b, c, d be real numbers,f be a map from[a, b]T into [c, d]T, P, Q be non empty
subsets of[a, b]T, andP1, Q1 be subsets ofR1. Supposea < b andc < d andP1 = P and
Q1 = Q and f is continuous and one-to-one andP1 is compact andf (a) = c and f (b) = d and
f ◦P = Q. Then f (sup(Ω(P1))) = sup(Ω(Q1)).

(20) For all real numbersa, b such thata≤ b holds inf[a,b] = a and sup[a,b] = b.

(21) Leta, b, c, d, e, f , g, h be real numbers andF be a map from[a, b]T into [c, d]T. Suppose
a < b andc < d ande< f anda≤ eand f ≤ b andF is a homeomorphism andF(a) = c and
F(b) = d andg = F(e) andh = F( f ). ThenF◦[e, f ] = [g,h].

(22) Let P, Q be subsets ofE2
T and p1, p2 be points ofE2

T. SupposeP meetsQ andP∩Q is
closed andP is an arc fromp1 to p2. Then there exists a pointE1 of E2

T such that

(i) E1 ∈ P∩Q, and

(ii) there exists a mapg from I into (E2
T)�P and there exists a real numbers2 such thatg is a

homeomorphism andg(0) = p1 andg(1) = p2 andg(s2) = E1 and 0≤ s2 ands2 ≤ 1 and for
every real numbert such that 0≤ t andt < s2 holdsg(t) /∈Q.

(23) Let P, Q be subsets ofE2
T and p1, p2 be points ofE2

T. SupposeP meetsQ andP∩Q is
closed andP is an arc fromp1 to p2. Then there exists a pointE1 of E2

T such that

(i) E1 ∈ P∩Q, and

(ii) there exists a mapg from I into (E2
T)�P and there exists a real numbers2 such thatg is a

homeomorphism andg(0) = p1 andg(1) = p2 andg(s2) = E1 and 0≤ s2 ands2 ≤ 1 and for
every real numbert such that 1≥ t andt > s2 holdsg(t) /∈Q.
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[7] Czesław Bylínski. Partial functions.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/partfun1.html.

[8] Agata Darmochwał. Compact spaces.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/compts_1.html.

[9] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces.Journal of Formalized Mathematics, 1, 1989.
http://mizar.org/JFM/Vol1/tops_2.html.

[10] Agata Darmochwał. The Euclidean space.Journal of Formalized Mathematics, 3, 1991.http://mizar.org/JFM/Vol3/euclid.html.

[11] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces — fundamental concepts.Journal of Formalized
Mathematics, 3, 1991.http://mizar.org/JFM/Vol3/topmetr.html.

[12] Agata Darmochwał and Yatsuka Nakamura. The topological spaceE2
T . Arcs, line segments and special polygonal arcs.Journal of

Formalized Mathematics, 3, 1991.http://mizar.org/JFM/Vol3/topreal1.html.

[13] Adam Grabowski. Introduction to the homotopy theory.Journal of Formalized Mathematics, 9, 1997.http://mizar.org/JFM/Vol9/
borsuk_2.html.

[14] Krzysztof Hryniewiecki. Basic properties of real numbers.Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/
Vol1/real_1.html.

[15] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces.Journal of Formalized Mathematics, 2, 1990. http://mizar.
org/JFM/Vol2/metric_1.html.

[16] Zbigniew Karno. Continuity of mappings over the union of subspaces.Journal of Formalized Mathematics, 4, 1992.http://mizar.
org/JFM/Vol4/tmap_1.html.

http://mizar.org/JFM/Vol1/ordinal1.html
http://mizar.org/JFM/Vol1/ordinal1.html
http://mizar.org/JFM/Vol7/weierstr.html
http://mizar.org/JFM/Vol7/weierstr.html
http://mizar.org/JFM/Vol3/pcomps_1.html
http://mizar.org/JFM/Vol3/pcomps_1.html
http://mizar.org/JFM/Vol1/binop_1.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/funct_2.html
http://mizar.org/JFM/Vol1/funct_2.html
http://mizar.org/JFM/Vol1/partfun1.html
http://mizar.org/JFM/Vol1/compts_1.html
http://mizar.org/JFM/Vol1/tops_2.html
http://mizar.org/JFM/Vol3/euclid.html
http://mizar.org/JFM/Vol3/topmetr.html
http://mizar.org/JFM/Vol3/topreal1.html
http://mizar.org/JFM/Vol9/borsuk_2.html
http://mizar.org/JFM/Vol9/borsuk_2.html
http://mizar.org/JFM/Vol1/real_1.html
http://mizar.org/JFM/Vol1/real_1.html
http://mizar.org/JFM/Vol2/metric_1.html
http://mizar.org/JFM/Vol2/metric_1.html
http://mizar.org/JFM/Vol4/tmap_1.html
http://mizar.org/JFM/Vol4/tmap_1.html


SOME PROPERTIES OF REAL MAPS 4

[17] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers.Journal of Formalized Mathematics, 1,
1989.http://mizar.org/JFM/Vol1/seq_4.html.

[18] Beata Padlewska. Locally connected spaces.Journal of Formalized Mathematics, 2, 1990.http://mizar.org/JFM/Vol2/connsp_
2.html.

[19] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions.Journal of Formalized Mathematics, 1, 1989.
http://mizar.org/JFM/Vol1/pre_topc.html.

[20] Konrad Raczkowski and Paweł Sadowski. Real function continuity.Journal of Formalized Mathematics, 2, 1990.http://mizar.org/
JFM/Vol2/fcont_1.html.

[21] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers.Journal of Formalized Mathematics, 2,
1990.http://mizar.org/JFM/Vol2/rcomp_1.html.

[22] Andrzej Trybulec. Tarski Grothendieck set theory.Journal of Formalized Mathematics, Axiomatics, 1989.http://mizar.org/JFM/
Axiomatics/tarski.html.

[23] Andrzej Trybulec. Subsets of real numbers.Journal of Formalized Mathematics, Addenda, 2003.http://mizar.org/JFM/Addenda/
numbers.html.

[24] Zinaida Trybulec. Properties of subsets.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/subset_1.html.

[25] Edmund Woronowicz. Relations and their basic properties.Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/
Vol1/relat_1.html.

[26] Edmund Woronowicz. Relations defined on sets.Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/
relset_1.html.

Received September 10, 1997

Published January 2, 2004

http://mizar.org/JFM/Vol1/seq_4.html
http://mizar.org/JFM/Vol2/connsp_2.html
http://mizar.org/JFM/Vol2/connsp_2.html
http://mizar.org/JFM/Vol1/pre_topc.html
http://mizar.org/JFM/Vol2/fcont_1.html
http://mizar.org/JFM/Vol2/fcont_1.html
http://mizar.org/JFM/Vol2/rcomp_1.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Addenda/numbers.html
http://mizar.org/JFM/Addenda/numbers.html
http://mizar.org/JFM/Vol1/subset_1.html
http://mizar.org/JFM/Vol1/relat_1.html
http://mizar.org/JFM/Vol1/relat_1.html
http://mizar.org/JFM/Vol1/relset_1.html
http://mizar.org/JFM/Vol1/relset_1.html

	some properties of real maps By adam grabowski and yatsuka nakamura

