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Summary. The main goal of the paper is to show logical equivalence of the two defi-
nitions of theopen subsetone from [3] and the other from [21]. This has been used to show
that the other two definitions are equivalent: the continuity of the map aslin [19] and in [20].
We used this to show that continuous and one-to-one maps are monotone (see theorems 16

and 17 for details).
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The articles[[22],[[244],[11],[[28],[[14],[125],[126],15],.16],[[20] [111] [ 14], 1211171 [27] ) [15] . [18],
[12], [19], [9], [8], [10], [16], [3], [2], and [13] provide the notation and terminology for this paper.

1. PRELIMINARIES

One can prove the following four propositions:

(1) Letnbe anatural numbep, qbe points of£f, andP be a subset of7. If Pis an arc from
p to g, thenP is compact.

(2) For every real numberholds O<r andr < 1 iff r € the carrier ofl.

(3) Letnbe a natural numbeps, p2 be points of£], andry, r» be real numbers. If1—ry) -
PL+r1-p2=(1—r2) - pr+rz2-p, thenry =rz or py = pz.

(4) Letnbe anatural number ang, p, be points ofE]. Suppose: # p.. Then there exists a
map f from L into (£7)[L(p1, p2) such that for every real numbesuch thak € [0,1] holds

f(X) = (1—X)- p1+X- p2 andf is a homeomorphism ant{0) = p; and f (1) = py.

Letn be a natural number. Note thaf is arcwise connected.
Let n be a natural number. One can check that there exists a subsp@gewbiich is compact

and non empty.
One can prove the following proposition

(5) Leta, b be points off%, f be a path frona to b, P be a non empty compact subspace of
£2, andg be a map frond into P. If f is one-to-one and = f andQp = rngf, theng is a
homeomorphism.
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2. EQUIVALENCE OF ANALYTICAL AND TOPOLOGICAL DEFINITIONS OF CONTINUITY

We now state a number of propositions:

(6) LetX be asubset dR. ThenX & the open set family of the metric space of real numbers
if and only if X is open.

(7) Letf be a map fronR? into R?, x be a point ofR?, g be a partial function fronR to R,
andx; be a real number. If is continuous ax and f = g andx = X3, theng is continuous in
X1.

(8) Let f be a continuous map frof! into R! andg be a partial function fronR to R. If
f =g, thengis continuous orR.

(9) Letf be a continuous one-to-one map fréhinto R1. Then

(i) for all pointsx, y of I and for all real numberp, q, f1, f2 such thax = p andy = q and
p<gandf; = f(x) andfy, = f(y) holdsf; < fp, or

(i) for all pointsx, y of I and for all real numbers, g, f1, f2 such thax = p andy = g and
p<gandf; = f(x) andf, = f(y) holds f; > f5.

(10) Letr, g1, &, b be real numbers andbe an element di, bjy. If a<bandx=r andg; >0
and]r — g1, r+01[ C [a,b], then]r —gs,r + g1[ = Ball(x,91).

(11) Leta, b be real numbers and be a subset dR. Suppose < banda ¢ X andb ¢ X. If
X € the open set family ofa, bju, thenX is open.

(12) For every open subsk¥tof R and for all real numbera, b such thaiX C [a,b] holdsa ¢ X
andb ¢ X.

(13) Leta, b be real numbers be a subset dR, andV be a subset df, bjy. Suppose < b
andV = X. If X is open, thelV € the open set family ofa, bjum.

(14) Leta, b, c, d, x1 be real numbers, be a map fronja, b]r into [c, d]t, x be a point ofa, b]r,
andg be a partial function fronR to R. Suppose < b andc < d andf is continuous ax and
f(a) =candf(b) =d andf is one-to-one and = g andx = x;. Theng|[a,b] is continuous
in xi.

(15) Leta, b, c, d be real numbersf be a map froma, bjr into [c, d]r, andg be a partial
function fromR to R. Supposd is continuous and one-to-one aaet bandc < d andf =g
andf(a) = candf(b) = d. Thengis continuous orfa, b].

3. ON THE MONOTONICITY OF CONTINUOUS MAPS
Next we state several propositions:

(16) Leta, b, c, d be real numbers anfibe a map fronja, b]r into [c, d]y. Supposea < b and
c< dandf is continuous and one-to-one afit) = ¢ and f(b) = d. Let x, y be points of
[a, bt andp, q, f1, f2 be real numbers. k= pandy=qandp < qandf; = f(x) and
f, = f(y), thenfy < fo.

(17) Letf be a continuous one-to-one map frdrmto I. Supposef (0) =0 andf(1) = 1. Let
X, y be points ofl andp, q, f1, 2 be real numbers. K= pandy=qgandp < gandf; = f(x)
andfy = f(y), thenfy < f,.

(18) Leta, b, ¢, d be real numbersf be a map froma, b]r into [c, d]y, P be a non empty
subset offa, b|t, andP;, Q1 be subsets oR!. Supposea < b andc < d andP, =P and f
is continuous and one-to-one aRdis compact and (a) = cand f(b) = d and f°P = Q.
Thenf(lnf(Q(pl))) = |nf(Q(Ql))
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(19) Leta, b, ¢, d be real numbersf be a map fronfa, bt into [c, d]t, P, Q be non empty

subsets ofa, b, andP;, Q; be subsets oR!. Suppose < b andc < dandP; =P and
Q1 =Qandf is continuous and one-to-one aRgis compact and (a) = candf (b) = d and
f°P=Q. Thenf (SUF(Q(pl))) = SUF(Q(Qﬁ).

(20) For all real numbera, b such thaia < b holds infa,b] = a and supa,b] = b.

(21) Leta, b, c, d, € f, g, hbe real numbers arfel be a map froma, bt into [c, d]t. Suppose

a<bandc<dande< f anda<eandf <bandF is a homeomorphism arfé(a) = cand
F(b) =dandg=F(e) andh=F(f). ThenF°[e, f] =[g,h].

(22) LetP, Q be subsets of2 and p;, pz be points of£2. Supposeé® meetsQ andPNQ is

closed and is an arc fromp; to p2. Then there exists a poift; of Z% such that
(i) Ei1ePnQ,and

(i) there exists a mag from I into (Z%) [P and there exists a real numbsgrsuch thag is a

homeomorphism ang(0) = p; andg(1) = p2 andg(sz) = E; and 0< s, ands, < 1 and for
every real numbersuch that 6< t andt < s, holdsg(t) ¢ Q.

(23) LetP, Q be subsets o'E% and pz1, p2 be points of‘B%. Suppose® meetsQ andPNQ is

(1

(2]

(3]

(4]
(5]

6]

(7]
8l
[

[10]

[11]

[12]

[13]

[14]

[15]

[16]

closed and is an arc fromp; to p2. Then there exists a poif of E% such that
(i) E1ePnQ,and

(i) there exists a mag from I into (£2) [P and there exists a real numksrsuch thag is a

homeomorphism ang(0) = p; andg(1) = p; andg(sz) = E; and 0< s, ands, < 1 and for
every real numbersuch that > t andt > s, holdsg(t) ¢ Q.
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