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Summary. We continue the development of the category theory basically following
[8] (compare alsd]7]). We define the concept of isomorphic categories and prove basic facts
related, e.g. that the Cartesian product of categories is associative up to the isomorphism.
We introduce the composition of a functor and a transformation, and of transformation and
a functor, and afterwards we define again those concepts for natural transformations. Let us
observe, that we have to duplicate those concepts because of the permissiveness: if a functor
F is not naturally transformable 1@, then natural transformation frof to G has no fixed
meaning, hence we cannot claim that the composition of it with a functor as a transformation
results in a natural transformation. We define also the so called horizontal composition of
transformations [([8], p. 140, exercide2,5(C)) and proveinterchange law([7], p.44). We
conclude with the definition of equivalent categories.

MML Identifier: ISOCAT_1.

WWW: http://mizar.org/JFM/Vol3/isocat_1.html

The articles|[9], 5], [11], 2], 3], [[1], [4], [6], and[[10] provide the notation and terminology for
this paper.

We use the following conventior, B, C, D denote categorie§; denotes a functor from to
B, andG denotes a functor from to C.

One can prove the following propositions:

(1) For all functions=, G such thaf is one-to-one an is one-to-one hold§F, G is one-
to-one.

(2) rngm(Ax B) =the morphisms oA and rngn(B x A) = the morphisms oA.
(3) For every morphisni of A such thatf is invertible holds=(f) is invertible.

(4) For every functoF from Ato B and for every functo6 from B to A holdsF -ida = F and
ida-G=G.

(YH Let F1, > be functors fromA to B. Supposé-; is transformable té. Lett be a transfor-
mation fromF; to I, anda be an object of\. Thent(a) € hom(Fi(a), F(a)).

(8) LetFy, R be functors fromA to B and G, Gy be functors fromB to C. Supposer; is
transformable td~» andG; is transformable t@&,. ThenG; - F; is transformable t&; - F.

(9) LetFy, R be functors fromA to B. Supposd is transformable té~. Lett be a transfor-
mation fromF; to F,. Suppost is invertible. Leta be an object oA. ThenF,(a) andR(a)
are isomorphic.

1 The propositions (5) and (6) have been removed.
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Let us consideC, D. Let us note that the functor fro@ to D can be characterized by the
following (equivalent) condition:

(Def. 1)(i) For every object of C there exists an objedtof D such that ifidc) = idq,
(i) for every morphismf of C holds it(idgomf ) = idgomit(f) @nd if(idcods ) = idcogit(f), and
(iiiy  for all morphismsf, g of C such that dorg = codf holds ifg- f) = it(g) -it(f).

Let us consideA. Then idy is a functor fromA to A. Let us consideB, C, let F be a functor
from A to B, and letG be a functor fronB to C. ThenG-F is a functor fromAto C.

In the sequeb, mare sets.

We now state three propositions:

(10) If F is an isomorphism, then for every morphignhof B there exists a morphisrh of A
suchthaf(f) =g.

(11) If F is an isomorphism, then for every objdrof B there exists an objeetof A such that
F(a)=bh.

(12) If F is one-to-one, then OBjis one-to-one.

Let us consideA, B, F. Let us assume th#t is an isomorphism. The functér ! yielding a
functor fromB to A is defined as follows:

(Def.2) F1=F1
Let us consideA, B, F. Let us observe tha& is isomorphic if and only if:
(Def. 3) F is one-to-one and rrig = the morphisms oB.

We introduceF is an isomorphism as a synonymbofis isomorphic.
Next we state several propositions:

(13) If F is an isomorphism, theR 1 is an isomorphism.
(14) IfF is an isomorphism, thefObjF)~* = Obj(F1).
(15) IfF is an isomorphism, thefF ~%)~1 = F.
(16) If F is an isomorphism, thef - F~1 = idg andF 1. F = ida.
(17) If Fis anisomorphism an@ is an isomorphism, the@ - F is an isomorphism.
Let us consideA, B. We say thaA andB are isomorphic if and only if:
(Def. 4) There exists a functor frodto B which is an isomorphism.

Let us notice that the predicafeandB are isomorphic is reflexive and symmetric. We introduce
A= B as a synonym oA\ andB are isomorphic.
One can prove the following propositions:

(20f] 1f A~BandB=C, thenA=C.
(21) [O(o,m),A]=A.

(22) [A,B]¥[B, Al

(23) [[AB],C]=[A[B,C]].

(24) IfA=BandC=D,then[A C]=[B,D].

2 The propositions (18) and (19) have been removed.
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Let us consideA, B, C and letF;, I, be functors fromA to B. Let us assume thd is trans-
formable toF,. Lett be a transformation frori; to F, and letG be a functor fronB to C. The
functor G-t yielding a transformation fror® - F; to G- is defined by:

(Def.5) G-t=G-t.

Let us conside@, B, C and letG;, G, be functors fromB to C. Let us assume thdb; is
transformable tds,. Let F be a functor fromA to B and lett be a transformation frore; to G,.
The functort - F yields a transformation fror®; - F to G, - F and is defined by:

(Def. 6) t-F =t-ObjF.
We now state three propositions:

(25) LetGy, Gy be functors fromB to C. SupposeG; is transformable t@,. Let F be a
functor fromA to B, t be a transformation fron®; to G,, anda be an object ofA. Then

(t-F)(a) =t(F(a)).

(26) LetF1, / be functors fromA to B. Supposer; is transformable td~. Lett be a
transformation fronfF; to F,, G be a functor fromB to C, anda be an object oA. Then

(G-t)(a) = G(t(a))-
(27) LetFy, R be functors fromA to B and G;, Gy be functors fromB to C. Supposer;

is naturally transformable t6, and G; is naturally transformable t&;. ThenG; - F; is
naturally transformable tG; - F».

Let us consideA, B, C and letF;, F be functors fromAto B. Let us assume th& is naturally
transformable td~. Lett be a natural transformation froR to > and letG be a functor fronB to
C. The functorG -t yields a natural transformation fro@®- F; to G- F, and is defined as follows:

(Def.7) G-t=G-t.
The following proposition is true

(28) LetFy, F, be functors fromA to B. Supposd is naturally transformable t6,. Lett be
a natural transformation froiffy to F», G be a functor fronB to C, anda be an object oA\

Then(G-t)(a) = G(t(a)).

Let us consideA, B, C and letG1, G, be functors fronBto C. Let us assume th&; is naturally
transformable t&,. Let F be a functor fromA to B and lett be a natural transformation fro®,
to Gy. The functott - F yielding a natural transformation fro@; - F to G - F is defined as follows:

(Def.8) t-F=t-F.
We now state the proposition

(29) LetGy, G, be functors fronB to C. Supposé&s; is naturally transformable tG,. LetF be
a functor fromA to B, t be a natural transformation frof®; to G, anda be an object oA.

Then(t-F)(a) =t(F(a)).

For simplicity, we adopt the following conventioR; F1, F», F3 are functors fronAto B, G, Gy,
Gy, G3 are functors fronB to C, H, Hy, Hy are functors fronC to D, sis a natural transformation
from Fy to /, S is a natural transformation frof to F3, t is a natural transformation fro@; to
Gy, t’ is a natural transformation frof@, to Gz, andu is a natural transformation froid; to Ho.

We now state a number of propositions:

(30) If Fp is naturally transformable tor, then for every objecta of A holds
hom(F1(a), Fz(a)) # 0.

(31) Supposé is naturally transformable tB,. Letty, t; be natural transformations froR
to F,. If for every objecta of A holdst; (a) =tx(a), thent; =ty.



ISOMORPHISMS OF CATEGORIES 4

(32) If Fy is naturally transformable tB, andF, is naturally transformable tB3, thenG- (s'°
5)=G-5°G-s.

(33) If Gy is naturally transformable 8, andG; is naturally transformable @3, then(t’°t) -
F=t -F-t-F

(34) If Hy is naturally transformable tdy, then(u-G)-F =u- (G- F).
(35) If Gy is naturally transformable t@,, then(H -t)-F =H - (t-F).
(36) If Fy is naturally transformable t6,, then(H -G)-s=H - (G-s).

(37) ids-F =idgE.

(38) G-idg =idg.k.

(39) If Gy is naturally transformable t@5, thent -idg =t.

(40) If Fy is naturally transformable t6,, thenicg-s=s.

Let us consideA, B, C, F1, I, G1, G, and let us consides, t. The functort syields a natural
transformation fronG; - F; to G2 - = and is defined by:

(Def.9) ts=t-F°Gs-s
The following propositions are true:

(41) If Fy is naturally transformable tB, and G; is naturally transformable t&,, thent s =
Gy-s°t-Fyp.

(42) If Fy is naturally transformable 6, then idg; S=s.
(43) If Gy is naturally transformable 1@, thent idjg, =t.

(44) Supposé; is naturally transformable 6, andG; is naturally transformable 1@, andH;
is naturally transformable td,. Thenu (ts) = (ut) s.

(45) If Gy is naturally transformable tG,, thent - F =t idg.
(46) If Fy is naturally transformable 6, thenG-s=idg s.

(47) Suppose that

(i) Fpis naturally transformable iy,

(i) R is naturally transformable tBs,

(i) Gy is naturally transformable 16, and

(iv)  Ggis naturally transformable tGs.
Then(t'°t) (§°s)=t'd°ts

(48) LetF be a functor fromAto B, G be a functor fronC to D, andl, J be functors fronB to
C.IfI2J thenG-12G-Jandl-F=J-F.

(49) LetF be a functor fromA to B, G be a functor fronB to A, andl be a functor fromA to A.
If | 2ida,thenF -1 =F andl-Gx~=G.

Let A, B be categories. We say thatis equivalent wittB if and only if:

(Def. 10) There exists a functér from A to B and there exists a funct@ from B to A such that
G-F ~ida andF -G 2 idg.

Let us notice that the predicafeis equivalent withB is reflexive and symmetric. We introduge
andB are equivalent as a synonymAis equivalent withB.
Next we state two propositions:
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(50) If A= B, thenAis equivalent withB.

(53 If AandB are equivalent anB andC are equivalent, theA andC are equivalent.

Let us consideA, B. Let us assume th#@ andB are equivalent. A functor from to B is said

to be an equivalence éfandB if:
(Def. 11) There exists a funct@ from B to A such thaG it = ida and it- G = idg.

Next we state several propositions:

(54) idais an equivalence ok andA.

(55) Supposé andB are equivalent anB andC are equivalent. Leff be an equivalence &

andB andG be an equivalence @& andC. ThenG-F is an equivalence ok andC.

(56) Supposé andB are equivalent. Leff be an equivalence @& andB. Then there exists an

equivalences of B andA such thalG- F = ida andF - G 2 idpg.

(57) For every functoF from A to B and for every functo6 from B to A such thatG - F 2 ida

holdsF is faithful.

(58) Supposé andB are equivalent. Leff be an equivalence & andB. Then

(1

(2]

(3]

(4

(5]

6]

[7]

8l

19

[10]

[11]

(i) F isfull and faithful, and

(i) for every objectb of B there exists an objeetof A such thab andF (a) are isomorphic.
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