Commutator and Center of a Group

Wojciech A. Trybulec Warsaw University Białystok

Summary. We introduce the notions of commutators of element, subgroups of a group, commutator of a group and center of a group. We prove P.Hall identity. The article is based on [5].

MML Identifier: GROUP_5.

WWW: http://mizar.org/JFM/Vol3/group_5.html

The articles [8], [16], [3], [1], [2], [4], [14], [9], [10], [6], [12], [15], [11], [13], and [7] provide the notation and terminology for this paper.

1. Preliminaries

The scheme *SubsetFD3* deals with non empty sets \mathcal{A} , \mathcal{B} , \mathcal{C} , a ternary functor \mathcal{F} yielding an element of \mathcal{B} , and a ternary predicate \mathcal{P} , and states that:

 $\{\mathcal{F}(c,d,e);c \text{ ranges over elements of } \mathcal{A},d \text{ ranges over elements of } \mathcal{B},e \text{ ranges over elements of } \mathcal{C}:\mathcal{P}[c,d,e]\}$ is a subset of \mathcal{B} for all values of the parameters.

For simplicity, we follow the rules: x is a set, k, n are natural numbers, i is an integer, G is a group, a, b, c, d are elements of G, A, B, C, D are subsets of G, H, H_1 , H_2 , H_3 , H_4 are subgroups of G, N_1 , N_2 are normal subgroups of G, F, F_1 , F_2 are finite sequences of elements of the carrier of G, and I is a finite sequence of elements of \mathbb{Z} .

Next we state several propositions:

- (1) $x \in \{1\}_G \text{ iff } x = 1_G.$
- (2) If $a \in H$ and $b \in H$, then $a^b \in H$.
- (3) For every strict normal subgroup N of G such that $a \in N$ holds $a^b \in N$.
- (4) $x \in H_1 \cdot H_2$ iff there exist a, b such that $x = a \cdot b$ and $a \in H_1$ and $b \in H_2$.
- (5) If $H_1 \cdot H_2 = H_2 \cdot H_1$, then $x \in H_1 \sqcup H_2$ iff there exist a, b such that $x = a \cdot b$ and $a \in H_1$ and $b \in H_2$.
- (6) If G is a commutative group, then $x \in H_1 \sqcup H_2$ iff there exist a, b such that $x = a \cdot b$ and $a \in H_1$ and $b \in H_2$.
- (7) For all strict normal subgroups N_1 , N_2 of G holds $x \in N_1 \sqcup N_2$ iff there exist a, b such that $x = a \cdot b$ and $a \in N_1$ and $b \in N_2$.
- (8) For every normal subgroup *N* of *G* holds $H \cdot N = N \cdot H$.

Let us consider G, F, a. The functor F^a yields a finite sequence of elements of the carrier of G and is defined as follows:

(Def. 1) $len(F^a) = len F$ and for every k such that $k \in dom F$ holds $F^a(k) = (F_k)^a$.

Next we state several propositions:

- $(12)^1$ $(F_1{}^a) \cap F_2{}^a = (F_1 \cap F_2)^a$.
- (13) $(\varepsilon_{\text{(the carrier of }G)})^a = \emptyset.$
- (14) $\langle a \rangle^b = \langle a^b \rangle$.
- (15) $\langle a,b\rangle^c = \langle a^c,b^c\rangle$.
- (16) $\langle a, b, c \rangle^d = \langle a^d, b^d, c^d \rangle$.
- (17) $\prod (F^a) = (\prod F)^a.$
- (18) $(F^a)^I = (F^I)^a$.

2. Commutators

Let us consider G, a, b. The functor [a,b] yields an element of G and is defined by:

(Def. 2)
$$[a,b] = a^{-1} \cdot b^{-1} \cdot a \cdot b$$
.

We now state a number of propositions:

$$(19) \quad [a,b] = a^{-1} \cdot b^{-1} \cdot a \cdot b \text{ and } [a,b] = a^{-1} \cdot (b^{-1} \cdot a) \cdot b \text{ and } [a,b] = a^{-1} \cdot (b^{-1} \cdot a \cdot b) \text{ and } [a,b] = a^{-1} \cdot (b^{-1} \cdot (a \cdot b)) \text{ and } [a,b] = a^{-1} \cdot b^{-1} \cdot (a \cdot b).$$

(20)
$$[a,b] = (b \cdot a)^{-1} \cdot (a \cdot b).$$

(21)
$$[a,b] = (b^{-1})^a \cdot b$$
 and $[a,b] = a^{-1} \cdot a^b$.

(22)
$$[1_G, a] = 1_G$$
 and $[a, 1_G] = 1_G$.

(23)
$$[a,a] = 1_G$$
.

(24)
$$[a, a^{-1}] = 1_G$$
 and $[a^{-1}, a] = 1_G$.

(25)
$$[a,b]^{-1} = [b,a].$$

(26)
$$[a,b]^c = [a^c,b^c].$$

(27)
$$[a,b] = (a^{-1})^2 \cdot (a \cdot b^{-1})^2 \cdot b^2$$
.

(28)
$$[a \cdot b, c] = [a, c]^b \cdot [b, c].$$

(29)
$$[a,b\cdot c] = [a,c]\cdot [a,b]^c$$
.

(30)
$$[a^{-1}, b] = [b, a]^{a^{-1}}$$
.

(31)
$$[a,b^{-1}] = [b,a]^{b^{-1}}$$
.

(32)
$$[a^{-1}, b^{-1}] = [a, b]^{(a \cdot b)^{-1}}$$
 and $[a^{-1}, b^{-1}] = [a, b]^{(b \cdot a)^{-1}}$.

(33)
$$[a,b^{a^{-1}}] = [b,a^{-1}].$$

(34)
$$[a^{b^{-1}}, b] = [b^{-1}, a].$$

(35)
$$[a^n, b] = a^{-n} \cdot (a^b)^n$$
.

¹ The propositions (9)–(11) have been removed.

- (36) $[a,b^n] = (b^a)^{-n} \cdot b^n$.
- (37) $[a^i, b] = a^{-i} \cdot (a^b)^i$.
- (38) $[a,b^i] = (b^a)^{-i} \cdot b^i$.
- (39) $[a,b] = 1_G \text{ iff } a \cdot b = b \cdot a.$
- (40) *G* is a commutative group iff for all a, b holds $[a,b] = 1_G$.
- (41) If $a \in H$ and $b \in H$, then $[a,b] \in H$.

Let us consider G, a, b, c. The functor [a, b, c] yields an element of G and is defined as follows:

(Def. 3)
$$[a, b, c] = [[a, b], c].$$

The following propositions are true:

- $[a, b, 1_G] = 1_G$ and $[a, 1_G, b] = 1_G$ and $[1_G, a, b] = 1_G$.
- (44) $[a, a, b] = 1_G$.
- (45) $[a, b, a] = [a^b, a].$
- (46) $[b, a, a] = ([b, a^{-1}] \cdot [b, a])^a$.
- (47) $[a, b, b^a] = [b, [b, a]].$
- (48) $[a \cdot b, c] = [a, c] \cdot [a, c, b] \cdot [b, c].$
- (49) $[a, b \cdot c] = [a, c] \cdot [a, b] \cdot [a, b, c].$
- (50) $[a, b^{-1}, c]^b \cdot [b, c^{-1}, a]^c \cdot [c, a^{-1}, b]^a = 1_G.$

Let us consider G, A, B. The commutators of A & B yields a subset of G and is defined by:

(Def. 4) The commutators of $A \& B = \{[a,b] : a \in A \land b \in B\}$.

One can prove the following propositions:

- $(52)^3$ $x \in \text{the commutators of } A \& B \text{ iff there exist } a, b \text{ such that } x = [a, b] \text{ and } a \in A \text{ and } b \in B.$
- (53) The commutators of $\emptyset_{\text{the carrier of } G}$ & $A = \emptyset$ and the commutators of A & $\emptyset_{\text{the carrier of } G} = \emptyset$.
- (54) The commutators of $\{a\} \& \{b\} = \{[a,b]\}.$
- (55) If $A \subseteq B$ and $C \subseteq D$, then the commutators of $A \& C \subseteq$ the commutators of B & D.
- (56) G is a commutative group if and only if for all A, B such that $A \neq \emptyset$ and $B \neq \emptyset$ holds the commutators of $A \& B = \{1_G\}$.

Let us consider G, H_1 , H_2 . The commutators of H_1 & H_2 yielding a subset of G is defined by:

(Def. 5) The commutators of H_1 & H_2 = the commutators of $\overline{H_1}$ & $\overline{H_2}$.

One can prove the following propositions:

- (58)⁴ $x \in$ the commutators of $H_1 \& H_2$ iff there exist a, b such that x = [a, b] and $a \in H_1$ and $b \in H_2$.
- (59) $1_G \in \text{the commutators of } H_1 \& H_2.$
- (60) The commutators of $\{1\}_G \& H = \{1_G\}$ and the commutators of $H \& \{1\}_G = \{1_G\}$.

² The proposition (42) has been removed.

³ The proposition (51) has been removed.

⁴ The proposition (57) has been removed.

- (61) Let N be a strict normal subgroup of G. Then the commutators of H & $N \subseteq \overline{N}$ and the commutators of N & $H \subseteq \overline{N}$.
- (62) Suppose H_1 is a subgroup of H_2 and H_3 is a subgroup of H_4 . Then the commutators of H_1 & $H_3 \subseteq$ the commutators of H_2 & H_4 .
- (63) G is a commutative group iff for all H_1 , H_2 holds the commutators of H_1 & $H_2 = \{1_G\}$.

Let us consider G. The commutators of G yielding a subset of G is defined as follows:

(Def. 6) The commutators of G = the commutators of Ω_G & Ω_G .

We now state two propositions:

- (65)⁵ $x \in \text{the commutators of } G \text{ iff there exist } a, b \text{ such that } x = [a, b].$
- (66) G is a commutative group iff the commutators of $G = \{1_G\}$.

Let us consider G, A, B. The functor [A, B] yielding a strict subgroup of G is defined by:

(Def. 7) [A,B] = gr(the commutators of A & B).

Next we state three propositions:

- $(68)^6$ If $a \in A$ and $b \in B$, then $[a, b] \in [A, B]$.
- (69) $x \in [A, B]$ iff there exist F, I such that len F = len I and rng $F \subseteq$ the commutators of A & B and $X = \prod (F^I)$.
- (70) If $A \subseteq C$ and $B \subseteq D$, then [A, B] is a subgroup of [C, D].

Let us consider G, H_1, H_2 . The functor $[H_1, H_2]$ yielding a strict subgroup of G is defined by:

(Def. 8)
$$[H_1, H_2] = [\overline{H_1}, \overline{H_2}].$$

The following propositions are true:

- $(72)^7$ $[H_1, H_2] = gr(the commutators of <math>H_1 \& H_2)$.
- (73) $x \in [H_1, H_2]$ iff there exist F, I such that len F = len I and rng $F \subseteq$ the commutators of H_1 & H_2 and H_3 and H_4 are H_4 and H_5 are H_6 are H_7 .
- (74) If $a \in H_1$ and $b \in H_2$, then $[a, b] \in [H_1, H_2]$.
- (75) If H_1 is a subgroup of H_2 and H_3 is a subgroup of H_4 , then $[H_1, H_3]$ is a subgroup of $[H_2, H_4]$.
- (76) For every strict normal subgroup N of G holds [N,H] is a subgroup of N and [H,N] is a subgroup of N.
- (77) For all strict normal subgroups N_1 , N_2 of G holds $[N_1, N_2]$ is a normal subgroup of G.
- (78) $[N_1, N_2] = [N_2, N_1].$
- (79) For all strict normal subgroups N_1 , N_2 , N_3 of G holds $[N_1 \sqcup N_2, N_3] = [N_1, N_3] \sqcup [N_2, N_3]$.
- (80) For all strict normal subgroups N_1 , N_2 , N_3 of G holds $[N_1, N_2 \sqcup N_3] = [N_1, N_2] \sqcup [N_1, N_3]$.

Let G be a group. The functor G^{c} yields a strict normal subgroup of G and is defined as follows:

(Def. 9)
$$G^{c} = [\Omega_G, \Omega_G].$$

We now state several propositions:

⁵ The proposition (64) has been removed.

⁶ The proposition (67) has been removed.

⁷ The proposition (71) has been removed.

- (82)⁸ For every group G holds $G^{c} = gr(\text{the commutators of } G)$.
- (83) Let G be a group. Then $x \in G^c$ if and only if there exists a finite sequence F of elements of the carrier of G and there exists I such that len F = len I and rng $F \subseteq$ the commutators of G and $X = \prod (F^I)$.
- (84) For every strict group G and for all elements a, b of G holds $[a,b] \in G^{c}$.
- (85) For every strict group G holds G is a commutative group iff $G^c = \{1\}_{G}$.
- (86) Let G be a group and H be a strict subgroup of G. Suppose the left cosets of H is finite and $|\bullet: H|_{\mathbb{N}} = 2$. Then G^c is a subgroup of H.

3. Center of a Group

Let us consider G. The functor Z(G) yields a strict subgroup of G and is defined as follows:

(Def. 10) The carrier of $Z(G) = \{a : \bigwedge_b a \cdot b = b \cdot a\}$.

Next we state several propositions:

- $(89)^9$ $a \in Z(G)$ iff for every b holds $a \cdot b = b \cdot a$.
- (90) Z(G) is a normal subgroup of G.
- (91) For every subgroup H of G such that H is a subgroup of Z(G) holds H is a normal subgroup of G.
- (92) Z(G) is commutative.
- (93) $a \in Z(G) \text{ iff } a^{\bullet} = \{a\}.$
- (94) For every strict group G holds G is a commutative group iff Z(G) = G.

4. AUXILIARY THEOREMS

In the sequel E denotes a non empty set and p, q denote finite sequences of elements of E. We now state two propositions:

- (95) If $k \in \text{dom } p$, then $(p \cap q)_k = p_k$.
- (96) If $k \in \text{dom } q$, then $(p \cap q)_{\text{len } p+k} = q_k$.

REFERENCES

- [1] Grzegorz Bancerek. Cardinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/card_1.html.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseq_1.html.
- [3] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [4] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/finset_1.html.
- [5] M. I. Kargapołow and J. I. Mierzlakow. Podstawy teorii grup. PWN, Warszawa, 1989.
- [6] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/vectsp_1.html.
- [7] Andrzej Trybulec. Domains and their Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/domain_1.html.

⁸ The proposition (81) has been removed.

⁹ The propositions (87) and (88) have been removed.

- [8] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [9] Michał J. Trybulec. Integers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/int_1.html.
- [10] Wojciech A. Trybulec. Vectors in real linear space. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/rlvect_1.html.
- [11] Wojciech A. Trybulec. Classes of conjugation. Normal subgroups. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/ JFM/Vol2/group_3.html.
- [12] Wojciech A. Trybulec. Groups. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/group_1.html.
- [13] Wojciech A. Trybulec. Lattice of subgroups of a group. Frattini subgroup. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/group_4.html.
- [14] Wojciech A. Trybulec. Pigeon hole principle. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_ 4.html.
- [15] Wojciech A. Trybulec. Subgroup and cosets of subgroups. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/group_2.html.
- [16] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.

Received May 15, 1991

Published January 2, 2004