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Summary. We introduce the notions of commutators of element, subgroups of a
group, commutator of a group and center of a group. We prove P.Hall identity. The article is
based on [5].
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The articles [8], [16], [3], [1], [2], [4], [14], [9], [10], [6], [12], [15], [11], [13], and [7] provide the
notation and terminology for this paper.

1. PRELIMINARIES

The schemeSubsetFD3deals with non empty setsA , B, C , a ternary functorF yielding an element
of B, and a ternary predicateP , and states that:

{F (c,d,e);c ranges over elements ofA ,d ranges over elements ofB,e ranges over
elements ofC : P [c,d,e]} is a subset ofB

for all values of the parameters.
For simplicity, we follow the rules:x is a set,k, n are natural numbers,i is an integer,G is a

group,a, b, c, d are elements ofG, A, B, C, D are subsets ofG, H, H1, H2, H3, H4 are subgroups of
G, N1, N2 are normal subgroups ofG, F , F1, F2 are finite sequences of elements of the carrier ofG,
andI is a finite sequence of elements ofZ.

Next we state several propositions:

(1) x∈ {1}G iff x = 1G.

(2) If a∈ H andb∈ H, thenab ∈ H.

(3) For every strict normal subgroupN of G such thata∈ N holdsab ∈ N.

(4) x∈ H1 ·H2 iff there exista, b such thatx = a·b anda∈ H1 andb∈ H2.

(5) If H1 ·H2 = H2 ·H1, thenx∈ H1tH2 iff there exista, b such thatx = a ·b anda∈ H1 and
b∈ H2.

(6) If G is a commutative group, thenx ∈ H1tH2 iff there exista, b such thatx = a ·b and
a∈ H1 andb∈ H2.

(7) For all strict normal subgroupsN1, N2 of G holdsx∈ N1tN2 iff there exista, b such that
x = a·b anda∈ N1 andb∈ N2.

(8) For every normal subgroupN of G holdsH ·N = N ·H.

1 c© Association of Mizar Users

http://mizar.org/JFM/Vol3/group_5.html


COMMUTATOR AND CENTER OF A GROUP 2

Let us considerG, F , a. The functorFa yields a finite sequence of elements of the carrier ofG
and is defined as follows:

(Def. 1) len(Fa) = lenF and for everyk such thatk∈ domF holdsFa(k) = (Fk)a.

Next we state several propositions:

(12)1 (F1
a)a F2

a = (F1
a F2)a.

(13) (ε(the carrier ofG))a = /0.

(14) 〈a〉b = 〈ab〉.

(15) 〈a,b〉c = 〈ac,bc〉.

(16) 〈a,b,c〉d = 〈ad,bd,cd〉.

(17) ∏(Fa) = (∏F)a.

(18) (Fa)I = (F I )a.

2. COMMUTATORS

Let us considerG, a, b. The functor[a,b] yields an element ofG and is defined by:

(Def. 2) [a,b] = a−1 ·b−1 ·a·b.

We now state a number of propositions:

(19) [a,b] = a−1 ·b−1 ·a·b and[a,b] = a−1 ·(b−1 ·a) ·b and[a,b] = a−1 ·(b−1 ·a·b) and[a,b] =
a−1 · (b−1 · (a·b)) and[a,b] = a−1 ·b−1 · (a·b).

(20) [a,b] = (b·a)−1 · (a·b).

(21) [a,b] = (b−1)a ·b and[a,b] = a−1 ·ab.

(22) [1G,a] = 1G and[a,1G] = 1G.

(23) [a,a] = 1G.

(24) [a,a−1] = 1G and[a−1,a] = 1G.

(25) [a,b]−1 = [b,a].

(26) [a,b]c = [ac,bc].

(27) [a,b] = (a−1)2 · (a·b−1)2 ·b2.

(28) [a·b,c] = [a,c]b · [b,c].

(29) [a,b·c] = [a,c] · [a,b]c.

(30) [a−1,b] = [b,a]a
−1

.

(31) [a,b−1] = [b,a]b
−1

.

(32) [a−1,b−1] = [a,b](a·b)−1
and[a−1,b−1] = [a,b](b·a)−1

.

(33) [a,ba−1
] = [b,a−1].

(34) [ab−1
,b] = [b−1,a].

(35) [an,b] = a−n · (ab)n.

1 The propositions (9)–(11) have been removed.
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(36) [a,bn] = (ba)−n ·bn.

(37) [ai ,b] = a−i · (ab)i .

(38) [a,bi ] = (ba)−i ·bi .

(39) [a,b] = 1G iff a·b = b·a.

(40) G is a commutative group iff for alla, b holds[a,b] = 1G.

(41) If a∈ H andb∈ H, then[a,b] ∈ H.

Let us considerG, a, b, c. The functor[a, b, c] yields an element ofG and is defined as follows:

(Def. 3) [a, b, c] = [[a,b],c].

The following propositions are true:

(43)2 [a, b, 1G] = 1G and[a, 1G, b] = 1G and[1G, a, b] = 1G.

(44) [a, a, b] = 1G.

(45) [a, b, a] = [ab,a].

(46) [b, a, a] = ([b,a−1] · [b,a])a.

(47) [a, b, ba] = [b, [b,a]].

(48) [a·b,c] = [a,c] · [a, c, b] · [b,c].

(49) [a,b·c] = [a,c] · [a,b] · [a, b, c].

(50) [a, b−1, c]b · [b, c−1, a]c · [c, a−1, b]a = 1G.

Let us considerG, A, B. The commutators ofA & B yields a subset ofG and is defined by:

(Def. 4) The commutators ofA & B = {[a,b] : a∈ A ∧ b∈ B}.

One can prove the following propositions:

(52)3 x∈ the commutators ofA & B iff there exista, b such thatx = [a,b] anda∈ A andb∈ B.

(53) The commutators of/0the carrier ofG & A = /0 and the commutators ofA & /0the carrier ofG = /0.

(54) The commutators of{a} & {b}= {[a,b]}.

(55) If A⊆ B andC⊆ D, then the commutators ofA & C⊆ the commutators ofB & D.

(56) G is a commutative group if and only if for allA, B such thatA 6= /0 andB 6= /0 holds the
commutators ofA & B = {1G}.

Let us considerG, H1, H2. The commutators ofH1 & H2 yielding a subset ofG is defined by:

(Def. 5) The commutators ofH1 & H2 = the commutators ofH1 & H2.

One can prove the following propositions:

(58)4 x ∈ the commutators ofH1 & H2 iff there exista, b such thatx = [a,b] anda ∈ H1 and
b∈ H2.

(59) 1G ∈ the commutators ofH1 & H2.

(60) The commutators of{1}G & H = {1G} and the commutators ofH & {1}G = {1G}.
2 The proposition (42) has been removed.
3 The proposition (51) has been removed.
4 The proposition (57) has been removed.
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(61) Let N be a strict normal subgroup ofG. Then the commutators ofH & N ⊆ N and the
commutators ofN & H ⊆ N.

(62) SupposeH1 is a subgroup ofH2 andH3 is a subgroup ofH4. Then the commutators ofH1

& H3 ⊆ the commutators ofH2 & H4.

(63) G is a commutative group iff for allH1, H2 holds the commutators ofH1 & H2 = {1G}.

Let us considerG. The commutators ofG yielding a subset ofG is defined as follows:

(Def. 6) The commutators ofG = the commutators ofΩG & ΩG.

We now state two propositions:

(65)5 x∈ the commutators ofG iff there exista, b such thatx = [a,b].

(66) G is a commutative group iff the commutators ofG = {1G}.

Let us considerG, A, B. The functor[A,B] yielding a strict subgroup ofG is defined by:

(Def. 7) [A,B] = gr(the commutators ofA & B).

Next we state three propositions:

(68)6 If a∈ A andb∈ B, then[a,b] ∈ [A,B].

(69) x∈ [A,B] iff there existF , I such that lenF = lenI and rngF ⊆ the commutators ofA & B
andx = ∏(F I ).

(70) If A⊆C andB⊆ D, then[A,B] is a subgroup of[C,D].

Let us considerG, H1, H2. The functor[H1,H2] yielding a strict subgroup ofG is defined by:

(Def. 8) [H1,H2] = [H1,H2].

The following propositions are true:

(72)7 [H1,H2] = gr(the commutators ofH1 & H2).

(73) x∈ [H1,H2] iff there existF , I such that lenF = lenI and rngF ⊆ the commutators ofH1

& H2 andx = ∏(F I ).

(74) If a∈ H1 andb∈ H2, then[a,b] ∈ [H1,H2].

(75) If H1 is a subgroup ofH2 andH3 is a subgroup ofH4, then[H1,H3] is a subgroup of[H2,H4].

(76) For every strict normal subgroupN of G holds [N,H] is a subgroup ofN and [H,N] is a
subgroup ofN.

(77) For all strict normal subgroupsN1, N2 of G holds[N1,N2] is a normal subgroup ofG.

(78) [N1,N2] = [N2,N1].

(79) For all strict normal subgroupsN1, N2, N3 of G holds[N1tN2,N3] = [N1,N3]t [N2,N3].

(80) For all strict normal subgroupsN1, N2, N3 of G holds[N1,N2tN3] = [N1,N2]t [N1,N3].

Let G be a group. The functorGc yields a strict normal subgroup ofG and is defined as follows:

(Def. 9) Gc = [ΩG,ΩG].

We now state several propositions:

5 The proposition (64) has been removed.
6 The proposition (67) has been removed.
7 The proposition (71) has been removed.
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(82)8 For every groupG holdsGc = gr(the commutators ofG).

(83) LetG be a group. Thenx∈ Gc if and only if there exists a finite sequenceF of elements
of the carrier ofG and there existsI such that lenF = lenI and rngF ⊆ the commutators ofG
andx = ∏(F I ).

(84) For every strict groupG and for all elementsa, b of G holds[a,b] ∈ Gc.

(85) For every strict groupG holdsG is a commutative group iffGc = {1}G.

(86) LetG be a group andH be a strict subgroup ofG. Suppose the left cosets ofH is finite and
|• : H|N = 2. ThenGc is a subgroup ofH.

3. CENTER OF AGROUP

Let us considerG. The functor Z(G) yields a strict subgroup ofG and is defined as follows:

(Def. 10) The carrier of Z(G) = {a :
∧

b a·b = b·a}.

Next we state several propositions:

(89)9 a∈ Z(G) iff for every b holdsa·b = b·a.

(90) Z(G) is a normal subgroup ofG.

(91) For every subgroupH of G such thatH is a subgroup of Z(G) holdsH is a normal subgroup
of G.

(92) Z(G) is commutative.

(93) a∈ Z(G) iff a• = {a}.

(94) For every strict groupG holdsG is a commutative group iff Z(G) = G.

4. AUXILIARY THEOREMS

In the sequelE denotes a non empty set andp, q denote finite sequences of elements ofE.
We now state two propositions:

(95) If k∈ domp, then(pa q)k = pk.

(96) If k∈ domq, then(pa q)lenp+k = qk.
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