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Summary. This article presents some theorems about functor structures. We start
with some basic lemmata concerning the composition of functor structures. Then, two theo-
rems about the restriction operator are formulated. Later we show two theorems concerning
the properties 'full’ and 'faithful’ of functor structures which are equivalent to the 'onto’ and
‘one-to-one’ properties of their morphmaps, respectively. Furthermore, we prove some theo-
rems about the inversion of functor structures.

MML Identifier: FUNCTORL.

WWW: http://mizar.org/JFM/Vol8/functorl.html

The articlesl[9],[16],115],[116],[13],15],14], 12], [10], [11],18], 7], 112],113],[I1], and [14] provide
the notation and terminology for this paper.

1. DEFINITIONS

In this papetX, Y are sets and is a non empty set.

Let us note that there exists a non empty category structure which is transitive and reflexive and
has units.

Let A be a non empty reflexive category structure. Observe that there exists a substrugture of
which is non empty and reflexive.

LetCq, C; be non empty reflexive category structuresHdie a feasible functor structure from
C1 to Cy, and letA be a non empty reflexive substructuredaf One can verify thaf [Ais feasible.

2. THEOREMS ABOUT SETS AND FUNCTIONS
Next we state four propositions:

(1) For every seX holds id is onto.

(2) LetAbe anonempty seB, C be non empty subsets &f andD be a non empty subset of
B.IfC=D,then® =(B).(P).

(3) For every functiorf from X intoY such thatf is bijective holdsf 1 is a function fromy
into X.

(4) Letf be afunction fronX intoY andg be a function fronY into Z. Suppos¢ is bijective
andg is bijective. Then there exists a functibrfrom X into Z such thath = g- f andh is
bijective.

1 © Association of Mizar Users
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3. THEOREMS ABOUT THE COMPOSITION OF FUNCTOR STRUCTURES
The following propositions are true:

(5) LetAbe anon empty reflexive category structuBdye a non empty reflexive substructure
of A, C be a non empty substructure &fandD be a non empty substructureBf If C=D,
then® =(2)-(2).

(6) LetA, Bbe non empty category structures &nble a functor structure frosto B. Suppose
F is bijective. Then the object map Bfis bijective and the morphism map Bfis “1-1".

(7) LetCy be anon empty grapky, C3 be non empty reflexive graphis,be a feasible functor
structure fromC, to C,, andG be a functor structure froi@, to Cs. If F is one-to-one ant
is one-to-one, thel - F is one-to-one.

(8) LetCy be anon empty grapk,, C3 be non empty reflexive graphis,be a feasible functor
structure fronC; to C,, andG be a functor structure froi@, to Cs. If F is faithful andG is
faithful, thenG-F is faithful.

(9) LetCy be anonempty grapky, Cz be non empty reflexive graphs,be a feasible functor
structure fronC; to C,, andG be a functor structure froi@, to Cs. If F is onto andG is onto,
thenG-F is onto.

(10) LetC; be a non empty grapki, Cz be non empty reflexive graphs,be a feasible functor
structure fronC; to Cy, andG be a functor structure froi@, to Cs. If F is full and G is full,
thenG-F is full.

(11) LetCy be anon empty graply, Cz be non empty reflexive graphs,be a feasible functor
structure fronC; to C,, andG be a functor structure froi@, to Cs. If F is injective andG is
injective, thenG - F is injective.

(12) LetCq be anon empty graplp, Cz be non empty reflexive graphs,be a feasible functor
structure fromC; to C,, andG be a functor structure from@; to Cs. If F is surjective ands
is surjective, theit - F is surjective.

(13) LetC; be a non empty grapky, Cs be non empty reflexive graphs,be a feasible functor
structure frontC; to C,, andG be a functor structure froi@, to Cs. If F is bijective andG is
bijective, thenG - F is bijective.

4, THEOREMS ABOUT THE RESTRICTION AND INCLUSION OPERATOR
The following three propositions are true:

(14) LetA, | be non empty reflexive category structurdse a non empty reflexive substructure
of A, C be a non empty substructure &f andD be a nhon empty substructure Bf Suppose
C =D. LetF be a functor structure frodto |. ThenF[C = F [B|D.

(15) LetCy, Cy, C3 be non empty reflexive category structuresbe a feasible functor struc-
ture fromC; to Cp, G be a functor structure fror@, to Cs, andA be a non empty reflexive
substructure o€;. Then(G-F)[A=G- (F[A).

(17E] Let A be a non empty category structure @tle a non empty substructure &f ThenB
is full if and only if B is full.

1 The proposition (16) has been removed.
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5. THEOREMS ABOUT'FULL’ AND 'FAITHFUL' FUNCTOR STRUCTURES
We now state two propositions:

(18) LetCy, Cy be non empty category structures @&ble a precovariant functor structure from
Cy to Cy. ThenF is full if and only if for all objectsos, 0z of C; holds Morph-Map (01, 02)
is onto.

(19) LetCi, C; be non empty category structures aRdbe a precovariant functor struc-
ture fromCy to C,. ThenF is faithful if and only if for all objectso;, 0, of C; holds
Morph-Map: (01, 07) is one-to-one.

6. THEOREMS ABOUT THE INVERSION OF FUNCTOR STRUCTURES
We now state several propositions:

(20) For every transitive non empty category structirgith units holds(ida) 1 = ida.

(21) LetA, B be transitive reflexive non empty category structures with unitd-ape a feasible
functor structure fronA to B. Suppose- is bijective. LetG be a feasible functor structure
from B to A. If the functor structure o6 = F 1, thenF - G = idg.

(22) LetA, B be transitive reflexive non empty category structures with unitd-aoe a feasible
functor structure fronA to B. If F is bijective, therF 1. F = ida.

(23) LetA, B be transitive reflexive non empty category structures with unitd-aloe a feasible
functor structure fromi\ to B. If F is bijective, then(F ~1)~1 = the functor structure df.

(24) LetA, B, C be transitive reflexive non empty category structures with u@itse a feasible
functor structure fronf to B, F be a feasible functor structure frofnto C, G; be a feasible
functor structure fronB to A, andF; be a feasible functor structure fratrto B. Suppose that

) Fis bijective,

(
(i)  Gis bijective,

(i)  Fq is bijective,

(iv) G is bijective,

(v) the functor structure o8, = G 1, and
(vi) the functor structure of; = F 1.
Then(F-G)™1 =G -Fy.
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