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Summary. This article presents some theorems about functor structures. We start
with some basic lemmata concerning the composition of functor structures. Then, two theo-
rems about the restriction operator are formulated. Later we show two theorems concerning
the properties ’full’ and ’faithful’ of functor structures which are equivalent to the ’onto’ and
’one-to-one’ properties of their morphmaps, respectively. Furthermore, we prove some theo-
rems about the inversion of functor structures.

MML Identifier: FUNCTOR1.

WWW: http://mizar.org/JFM/Vol8/functor1.html

The articles [9], [6], [15], [16], [3], [5], [4], [2], [10], [11], [8], [7], [12], [13], [1], and [14] provide
the notation and terminology for this paper.

1. DEFINITIONS

In this paperX, Y are sets andZ is a non empty set.
Let us note that there exists a non empty category structure which is transitive and reflexive and

has units.
Let A be a non empty reflexive category structure. Observe that there exists a substructure ofA

which is non empty and reflexive.
Let C1, C2 be non empty reflexive category structures, letF be a feasible functor structure from

C1 to C2, and letA be a non empty reflexive substructure ofC1. One can verify thatF�A is feasible.

2. THEOREMS ABOUT SETS AND FUNCTIONS

Next we state four propositions:

(1) For every setX holds idX is onto.

(2) LetA be a non empty set,B, C be non empty subsets ofA, andD be a non empty subset of
B. If C = D, then C

↪→ = ( B
↪→ ) · ( D

↪→ ).

(3) For every functionf from X into Y such thatf is bijective holdsf−1 is a function fromY
into X.

(4) Let f be a function fromX intoY andg be a function fromY into Z. Supposef is bijective
andg is bijective. Then there exists a functionh from X into Z such thath = g · f andh is
bijective.
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3. THEOREMS ABOUT THE COMPOSITION OF FUNCTOR STRUCTURES

The following propositions are true:

(5) Let A be a non empty reflexive category structure,B be a non empty reflexive substructure
of A, C be a non empty substructure ofA, andD be a non empty substructure ofB. If C = D,
then C

↪→ = ( B
↪→ ) · ( D

↪→ ).

(6) LetA, Bbe non empty category structures andF be a functor structure fromA toB. Suppose
F is bijective. Then the object map ofF is bijective and the morphism map ofF is “1-1”.

(7) LetC1 be a non empty graph,C2, C3 be non empty reflexive graphs,F be a feasible functor
structure fromC1 to C2, andG be a functor structure fromC2 to C3. If F is one-to-one andG
is one-to-one, thenG·F is one-to-one.

(8) LetC1 be a non empty graph,C2, C3 be non empty reflexive graphs,F be a feasible functor
structure fromC1 to C2, andG be a functor structure fromC2 to C3. If F is faithful andG is
faithful, thenG·F is faithful.

(9) LetC1 be a non empty graph,C2, C3 be non empty reflexive graphs,F be a feasible functor
structure fromC1 toC2, andG be a functor structure fromC2 toC3. If F is onto andG is onto,
thenG·F is onto.

(10) LetC1 be a non empty graph,C2, C3 be non empty reflexive graphs,F be a feasible functor
structure fromC1 to C2, andG be a functor structure fromC2 to C3. If F is full andG is full,
thenG·F is full.

(11) LetC1 be a non empty graph,C2, C3 be non empty reflexive graphs,F be a feasible functor
structure fromC1 to C2, andG be a functor structure fromC2 to C3. If F is injective andG is
injective, thenG·F is injective.

(12) LetC1 be a non empty graph,C2, C3 be non empty reflexive graphs,F be a feasible functor
structure fromC1 to C2, andG be a functor structure fromC2 to C3. If F is surjective andG
is surjective, thenG·F is surjective.

(13) LetC1 be a non empty graph,C2, C3 be non empty reflexive graphs,F be a feasible functor
structure fromC1 to C2, andG be a functor structure fromC2 to C3. If F is bijective andG is
bijective, thenG·F is bijective.

4. THEOREMS ABOUT THE RESTRICTION AND INCLUSION OPERATOR

The following three propositions are true:

(14) LetA, I be non empty reflexive category structures,B be a non empty reflexive substructure
of A, C be a non empty substructure ofA, andD be a non empty substructure ofB. Suppose
C = D. Let F be a functor structure fromA to I . ThenF�C = F�B�D.

(15) LetC1, C2, C3 be non empty reflexive category structures,F be a feasible functor struc-
ture fromC1 to C2, G be a functor structure fromC2 to C3, andA be a non empty reflexive
substructure ofC1. Then(G·F)�A = G· (F�A).

(17)1 Let A be a non empty category structure andB be a non empty substructure ofA. ThenB
is full if and only if B

↪→ is full.

1 The proposition (16) has been removed.
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5. THEOREMS ABOUT ’ FULL’ AND ’ FAITHFUL’ FUNCTOR STRUCTURES

We now state two propositions:

(18) LetC1, C2 be non empty category structures andF be a precovariant functor structure from
C1 to C2. ThenF is full if and only if for all objectso1, o2 of C1 holds Morph-MapF(o1,o2)
is onto.

(19) Let C1, C2 be non empty category structures andF be a precovariant functor struc-
ture fromC1 to C2. Then F is faithful if and only if for all objectso1, o2 of C1 holds
Morph-MapF(o1,o2) is one-to-one.

6. THEOREMS ABOUT THE INVERSION OF FUNCTOR STRUCTURES

We now state several propositions:

(20) For every transitive non empty category structureA with units holds(idA)−1 = idA.

(21) LetA, B be transitive reflexive non empty category structures with units andF be a feasible
functor structure fromA to B. SupposeF is bijective. LetG be a feasible functor structure
from B to A. If the functor structure ofG = F−1, thenF ·G = idB.

(22) LetA, B be transitive reflexive non empty category structures with units andF be a feasible
functor structure fromA to B. If F is bijective, thenF−1 ·F = idA.

(23) LetA, B be transitive reflexive non empty category structures with units andF be a feasible
functor structure fromA to B. If F is bijective, then(F−1)−1 = the functor structure ofF .

(24) LetA, B, C be transitive reflexive non empty category structures with units,G be a feasible
functor structure fromA to B, F be a feasible functor structure fromB to C, G1 be a feasible
functor structure fromB to A, andF1 be a feasible functor structure fromC to B. Suppose that

(i) F is bijective,

(ii) G is bijective,

(iii) F1 is bijective,

(iv) G1 is bijective,

(v) the functor structure ofG1 = G−1, and

(vi) the functor structure ofF1 = F−1.

Then(F ·G)−1 = G1 ·F1.
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[2] Czesław Bylínski. Binary operations.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/binop_1.html.
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