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Summary. In this article, we show the properties of the calculating type state ma-
chines. In the first section, we have defined calculating type state machines of which the state
transition only depends on the first input. We have also proved theorems of the state machines.
In the second section, we defined Moore machines with final states. We also introduced the
concept of result of the Moore machines. In the last section, we proved the correctness of
several calculating type of Moore machines.
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The articles([14],[17],[118],[[15],[10],[11],[[1B],[[4], 18], [15], 18], [12], 2], ([17], 1101, 18], [[16], and
[11] provide the notation and terminology for this paper.

1. CALCULATING TYPE

For simplicity, we use the following conventior; y are real numbers, j are non empty natural
numbers], O are non empty sets, s, S, S3 are elements of, w, wy, w, are finite sequences of
elements of, t is an element 0O, Sis a non empty FSM ovdr, andq, g; are states o8.

Let us considel, S g, w. We introduce GENWw, q) as a synonym ofq, w)-admissible.

Let us considel, S g, w. One can verify that GE(v,q) is non empty.

One can prove the following three propositions:

(1) GEN({s),q) = (g, (the transition of5)({q, s))).

(2) GEN((s1,),09) = (q, (the transition ofS)({q, s1)), (the transition ofS)({(the transition of
S({a, s1)), %2)))-

(3) GEN((s1,,%3),0) = (g, (the transition 0fS)({q, s1}), (the transition of5)({(the transition
of S)({q, s1)), s2)), (the transition ofS)({(the transition ofS)({(the transition ofS)({q, s1)),

S2)), %8)))-

Let us considet, S. We say thaSSis calculating type if and only if the condition (Def. 1) is
satisfied.

(Def. 1) Letgivenj and givenwy, wy. Supposevy (1) =wy(1) andj <lenw; +1 andj <lenwy+1.
Then(GEN(wj, the initial state 0fS))(j) = (GEN(w, the initial state ofS))(j).
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We now state four propositions:

(4) SupposeS is calculating type. Let giverws, wp. Supposew;(1) = wz(1). Then
GEN(wy, the initial state ofS) and GENwp, the initial state ofS) areC-comparable.

(5) Suppose that for ally, wo such thatwvy (1) = wo(1) holds GENwy, the initial state ofS)
and GENws, the initial state ofS) areC-comparable. TheB8is calculating type.

(6) SupposeSis calculating type. Let givems, wo. Supposens (1) = wy(1) and lenw; =
lenw,. Then GENws, the initial state ofS) = GEN(w», the initial state ofS).

(7) Suppose that for all;, w, such thatvi (1) = wy(1) and lerw; = lenw; holds GENws, the
initial state ofS) = GEN(w», the initial state ofS). ThenSis calculating type.

Let us considel, S, g, s. We say thaty is accessible viaif and only if:

(Def. 2) There exists a finite sequeng®f elements of such that the initial state S<S'>—A>W g.
Let us considel, S g. We say thaty is accessible if and only if:
(Def. 3) There exists a finite sequene®f elements of such that the initial state & —— q.

One can prove the following propositions:

(8) If gis accessible vig, thenqis accessible.

(9) If gis accessible and # the initial state ofS, then there exists such thag is accessible
vias.

(10) The initial state o8is accessible.

(11) SupposSis calculating type andis accessible via Then there exists a non empty natural
numberm such that for every if lenw+ 1 > mandw(1) = s, thenq = (GEN(w, the initial
state ofS))(m) and for everyi such thai < mholds(GEN(w,the initial state 0fS))(i) # g.

Let us considel, S. We say thaBis regular if and only if:
(Def. 4) Every state 0Bis accessible.

Next we state several propositions:

(12) Iffor all s1, s, g holds (the transition 08)({q, s1)) = (the transition 05)({q, sz} ), thenS
is calculating type.
(13) LetgivenS Suppose that

(i) forall s1, s, g such thaty # the initial state ofSholds (the transition 08)({q, 1)) = (the
transition ofS)({(q, s2)), and

(i) forall s, g; holds (the transition 08)({d1, S)) # the initial state ofS.
ThenSis calculating type.

(14) Supposs&is regular and calculating type. Let given s, g. If g # the initial state ofS,
then(GEN((s1),))(2) = (GEN((s2),))(2)-

(15) Suppos&is regular and calculating type. Let given sp, 9. Suppose] # the initial state
of S. Then (the transition 0%)({q, s1)) = (the transition 05)((q, %2}).

(16) Supposesis regular and calculating type. Let givens;, S, 9. Suppose (the transition
of S)((the initial state ofS, 51)) # (the transition ofS)((the initial state ofS, s,)). Then (the
transition ofS)((q, s)) # the initial state ofS.
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2. STATE MACHINE WITH FINAL STATES

Let | be a set. We introduce state machines dweith final states which are extensions of FSM
overl and are systems

( acarrier, a transition, an initial state, final states
where the carrier is a set, the transition is a function ffahe carrierl ] into the carrier, the initial
state is an element of the carrier, and the final states constitute a subset of the carrier.

Let | be a set. Observe that there exists a state machind avigh final states which is non
empty.

Let us considel, sand letSbe a non empty state machine overith final states. We say that
sleads to final state dBif and only if:

(Def.5) There exists a statpof Ssuch thaty is accessible vigandq € the final states 0&.

Let us considel and letSbe a non empty state machine ovewith final states. We say th&
is halting if and only if:

(Def. 6) sleads to final state db

Let| be a set and leD be a non empty set. We consider Moore state machines! aued O
with final states as extensions of state machine bwéth final states and Moore-FSM overO as
systems

( a carrier, a transition, an output function, an initial state, final states
where the carrier is a set, the transition is a function ffahe carrier| ] into the carrier, the output
function is a function from the carrier int@, the initial state is an element of the carrier, and the
final states constitute a subset of the carrier.

Let | be a set and leD be a non empty set. One can verify that there exists a Moore state
machine ovet andO with final states which is non empty and strict.

Let us considet, O, leti, f be sets, and let be a function from{i, f} into O. The functor
| -TwoStatesMooreSM, f,0) yields a non empty strict Moore state machine ovend O with
final states and is defined by the conditions (Def. 7).

(Def. 7)(i) The carrier of -TwoStatesMooreSM, f,0) = {i, f },
(i) the transition ofl -TwoStatesMooreSK, f,0) = [ {i, f}, 1] — f,
(iii)  the output function ofl -TwoStatesMooreSM, f,0) = o,
(iv) theinitial state ofl -TwoStatesMooreSM, f,0) =i, and
(v) thefinal states of-TwoStatesMooreSK, f,0) = {f}.

Next we state the proposition

(17) Leti, f be setsp be a function from(i, f} into O, and given;j. If 1 < j andj < lenw+1,
then(GEN(w, the initial state of -TwoStatesMooreSM, f,0)))(j) = f.

Let us considet, O, leti, f be sets, and lat be a function from{i, f} into O. Observe that
| -TwoStatesMooreSM, f,0) is calculating type.

Let us considet, O, leti, f be sets, and led be a function from{i, f} into O. Note that
| -TwoStatesMooreSM, f,0) is halting.

In the sequeh, m are non empty natural numbers akidis a non empty Moore state machine
overl andO with final states.

One can prove the following proposition

(18) Suppose that
(i) Mis calculating type,
(i) sleads to final state d¥1, and
(iii)  the initial state ofM ¢ the final states d¥.
Then there exists a non empty natural numiesuch that
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(iv) for every w such that lem+ 1 > m andw(1) = s holds (GEN(w, the initial state of
M))(m) € the final states d#, and

(v) forallw, jsuchthat <lenw+ 1 andw(1l) =sandj < mholds(GEN(w,the initial state
of M))(j) ¢ the final states of.

3. CORRECTNESS OF ARESULT OF STATE MACHINE

Let us considet, O, M, sand lett be a set. We say thatis a result ofs in M if and only if the
condition (Def. 8) is satisfied.

(Def. 8) There existsn such that for every if w(1) = s, then if m < lenw—+ 1, thent = (the
output function ofM)((GEN(w, the initial state ofM))(m)) and (GEN(w, the initial state of
M))(m) € the final states oM and for everyn such thatn < m andn < lenw+ 1 holds
(GEN(w, the initial state oM))(n) ¢ the final states ofl.

One can prove the following propositions:

(19) Suppose the initial state bf € the final states of. Then (the output function d¥l)(the
initial state ofM) is a result ofsin M.
(20) Suppose that
(i) M is calculating type,
(i) sleads to final state d¥l, and
(iiiy  the initial state ofM ¢ the final states of.
Then there existswhich is a result o§in M.

(21) Suppos# is calculating type andleads to final state dfl. Lett;, t, be elements oD. If
t1 is aresult osin M andt, is a result ofsin M, thent; = t5.

(22) LetX be a non empty sef, be a binary operation a4, andM be a non empty Moore state
machine ovef. X, X ] andX U {X} with final states. Suppose that

(i) M is calculating type,
(i) the carrier ofM = XU {X},
(iii)  the final states oM = X,
(iv) theinitial state oM = X,
(v) the output function oM = idine carrier ofm, @nd

(vi) forall elements, y of X holds (the transition df1)({the initial state oM, {x, y)}) = f(x,
y)-
ThenM is halting and for all elements y of X holds f (x, y) is a result of(x, y) in M.

(23) LetM be a non empty Moore state machine of/&, R:] andR U {R} with final states.
Suppose thaM is calculating type and the carrier 8 = RU{R} and the final states of
M = R and the initial state oM = R and the output function d¥1 = idie carrier oty @nd for
all x, y such thai >y holds (the transition of1)({the initial state oM, (x, y))) = xand for
all x, y such tha < y holds (the transition o) ((the initial state oM, (x, y))) =Y. Letx,
y be elements dR. Then maxx,y) is a result of(x, y) in M.

(24) LetM be a non empty Moore state machine of&, R:] andR U {R} with final states.
Suppose thaM is calculating type and the carrier 8 = RU{R} and the final states of
M = R and the initial state oM = R and the output function d¥1 = idie carrier oty @nd for
all x, y such thai < y holds (the transition of1)({the initial state oM, (x, y))) = xand for
all x, y such thatx > y holds (the transition o) ((the initial state oM, (x, y))) =V. LetXx,
y be elements dR. Then mir(x,y) is a result of(x, y) in M.
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(25) LetM be a non empty Moore state machine of&, R:] andR U {R} with final states.
Suppose that

(i) M is calculating type,
(i) the carrier ofM = RU {R},
(i)  the final states oM =R,
(iv) theinitial state oM =R,
(v) the output function oM = idine carrier ofm, @nd
(vi) forall x, y holds (the transition o) ((the initial state oM, (x, y))) = x+YV.
Letx, y be elements dR. Thenx+y is a result of(x, y) in M.
(26) LetM be a non empty Moore state machine of®;, R andR U {R} with final states.
Suppose thaM is calculating type and the carrier 8 = RU{R} and the final states of
M = R and the initial state oM = R and the output function d¥1 = idie carrier oy @nd for
all x, y such that > 0 ory > 0 holds (the transition df1)((the initial state oM, (x,y))) =1
and for allx, y such thatx =0 ory = 0 butx < 0 buty < 0 holds (the transition of1)({the
initial state ofM, (x,y))) = 0 and for allx, y such thak < 0 andy < 0 holds (the transition of

M) ({the initial state oM, (x,y))) = —1. Letx, y be elements oR. Then maxsgnx, sgny)
is a result of(x, y) in M.

Let us considel, O. One can check that there exists a non empty Moore state maching over
andO with final states which is calculating type and halting.

Let us considet. Observe that there exists a non empty state machinel avigh final states
which is calculating type and halting.

Let us considel, O, letM be a calculating type halting non empty Moore state machinelover
andO with final states, and let us considerThe functor Resu(ls, M) yielding an element oD is
defined by:

(Def. 9) Resulgs,M) is a result ofsin M.

We now state several propositions:

(27) For every functiorf from {0, 1} into O holds Results, | -TwoStatesMooreSKD, 1, f)) =
f(1).

(28) LetM be a calculating type halting non empty Moore state machine pRefR:] and
R U{R} with final states. Suppose that
(i) the carrier oM =RU{R},
(i) the final states oM = R,
(i)  the initial state ofM =R,
(iv) the output function oM = idine carrier oM,

(v) forall x, y such tha >y holds (the transition o) ((the initial state oM, (x,y))) =X,
and

(vi) forall x, y such thak < y holds (the transition df)((the initial state oM, (x, y))) =V.
Letx, y be elements aR. Then Resuli{x, y},M) = max(x,y).
(29) LetM be a calculating type halting non empty Moore state machine pieiR ] and
RU{R} with final states. Suppose that
(i) the carrier oM = RU{R},
(i) the final states oM =R,
(i) theinitial state ofM = R,
(iv) the output function oM = ide carrier oM
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(v) forall x, y such tha < y holds (the transition of1)({the initial state oM, (x, y))) =X,
and

(vi) forall x, y such tha >y holds (the transition df1)((the initial state oM, (x, y))) =V.
Letx, y be elements dR. Then Result{x, y),M) = min(x,y).
(30) LetM be a calculating type halting non empty Moore state machine pReiR:] and
RU{R} with final states. Suppose that
(i) the carrier oM = RU{R},
(i) the final states oM = R,
(iii)  theinitial state ofM =R,
(iv) the output function oM = idie carrier otm, and
(v) forall x, y holds (the transition of1)({the initial state oM, {x,y)}) =x+V.
Letx, y be elements dR. Then Result(x, y},M) = x+V.

(31) LetM be a calculating type halting non empty Moore state machine pReiR ] and
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(4]
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[15]

RU{R} with final states. Suppose that the carriebf= R U {R} and the final states of
M =R and the initial state oM = R and the output function d¥1 = idie carrier o @nd for
all x, y such thak > 0 ory > 0 holds (the transition d1)({the initial state oM, (x,y))) =1
and for allx, y such thatx =0 ory = 0 butx < 0 buty < 0 holds (the transition df1)({the
initial state ofM, (x,y})) = 0 and for allx, y such thai < 0 andy < 0 holds (the transition
of M)({the initial state ofM, (x,y))) = —1. Let x, y be elements oR. Then Result(x,
y),M) = max(sgnx, sgry).
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