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Summary. We prove the correctness of two short programs for theSCM machine:
one computes Fibonacci numbers and the other computes thefusc function of Dijkstra [5].
The formal definitions of these functions can be found in [4]. We prove the total correctness
of the programs in two ways: by conducting inductions on computations and inductions on
input data. In addition we characterize the concrete complexity of the programs as defined in
[3].

MML Identifier: FIB_FUSC.

WWW: http://mizar.org/JFM/Vol5/fib_fusc.html

The articles [9], [1], [7], [2], [6], [3], [8], and [4] provide the notation and terminology for this
paper.

The program computing Fib is a finite sequence of elements of the instructions ofSCM and is
defined by:

(Def. 1) The program computing Fib= 〈if d1 > 0 goto i2〉a 〈haltSCM〉a 〈d3:=d0〉a 〈SubFrom(d1,d0)〉a

〈if d1 = 0 goto i1〉a 〈d4:=d2〉a 〈d2:=d3〉a 〈AddTo(d3,d4)〉a 〈goto(i3)〉.

We now state the proposition

(1) Let N be a natural number ands be a state with instruction counter on 0, with the program
computing Fib located from 0, and〈1〉a 〈N〉a 〈0〉a 〈0〉 from 0. Then

(i) s is halting,

(ii) if N = 0, then the complexity ofs= 1,

(iii) if N > 0, then the complexity ofs= 6·N−2, and

(iv) (Result(s))(d3) = Fib(N).

Let i be an integer. The functor Fusc′(i) yields a natural number and is defined as follows:

(Def. 2) There exists a natural numbern such thati = n and Fusc′(i) = Fusc(n) or i is not a natural
number and Fusc′(i) = 0.

The program computing Fusc is a finite sequence of elements of the instructions ofSCM and is
defined by:

(Def. 3) The program computing Fusc= 〈if d1 = 0 goto i8〉 a 〈d4:=d0〉 a 〈Divide(d1,d4)〉 a

〈if d4 = 0 goto i6〉a 〈AddTo(d3,d2)〉a 〈goto(i0)〉a 〈AddTo(d2,d3)〉a 〈goto(i0)〉a 〈haltSCM〉.
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The following propositions are true:

(2) Let N be a natural number. SupposeN > 0. Let s be a state with instruction counter on 0,
with the program computing Fusc located from 0, and〈2〉a 〈N〉a 〈1〉a 〈0〉 from 0. Thens is
halting and(Result(s))(d3) = Fusc(N) and the complexity ofs= 6· (blog2Nc+1)+1.

(3) Let N be a natural number,k, F1, F2 be natural numbers, ands be a state with instruction
counter on 3, with the program computing Fib located from 0, and〈1〉a 〈N〉a 〈F1〉a 〈F2〉
from 0. SupposeN > 0 andF1 = Fib(k) andF2 = Fib(k+1). Then

(i) s is halting,

(ii) the complexity ofs= 6·N−4, and

(iii) there exists a natural numberm such thatm= (k+N)−1 and(Result(s))(d2) = Fib(m)
and(Result(s))(d3) = Fib(m+1).

(5)1 Let n be a natural number,N, A, B be natural numbers, ands be a state with instruction
counter on 0, with the program computing Fusc located from 0, and〈2〉a 〈n〉a 〈A〉a 〈B〉 from
0. SupposeN > 0 and Fusc(N) = A·Fusc(n)+B·Fusc(n+1). Then

(i) s is halting,

(ii) (Result(s))(d3) = Fusc(N),

(iii) if n = 0, then the complexity ofs= 1, and

(iv) if n > 0, then the complexity ofs= 6· (blog2nc+1)+1.

(6) Let N be a natural number. SupposeN > 0. Let s be a state with instruction counter on 0,
with the program computing Fusc located from 0, and〈2〉a 〈N〉a 〈1〉a 〈0〉 from 0. Then

(i) s is halting,

(ii) (Result(s))(d3) = Fusc(N),

(iii) if N = 0, then the complexity ofs= 1, and

(iv) if N > 0, then the complexity ofs= 6· (blog2Nc+1)+1.
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