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Summary. In this article, there are two themes. One of them is the proof that convex
hull of a given subset consists of all convex combinations BF. Another is definitions of
cone and convex cone and some properties of them.

MML Identifier: CONVEX3.

WWW: http://mizar.org/JFM/Voll5/convex3.html

The articles|[7], [11], [[8], [[2], [12], [[3], [[5], [[1], [4], [9], [10], and[[6] provide the notation and
terminology for this paper.

1. EQUALITY OF CONVEX HULL AND SET OF CONVEX COMBINATIONS

LetV be a real linear space. The functor ConvexCowlyields a set and is defined by:
(Def. 1) For every sdt holdsL € ConvexComlV) iff L is a convex combination &f.

LetV be areal linear space and Mtbe a non empty subsetéf The functor ConvexConiiM)
yields a set and is defined as follows:

(Def. 2) For every sdt holdsL € ConvexCombM) iff L is a convex combination dfl.

We now state several propositions:

(1) LetV be areal linear space amdbe a vector o¥/. Then there exists a convex combination
L of V such thaty L = v and for every non empty subsgiof V such thatv € A holdsL is a
convex combination oA.

(2) LetV be areallinear space amg v, be vectors of/. Suppose; # vo. Then there exists a
convex combinatioth. of V such that for every non empty subgeof V if {vi,vo} C A, then
L is a convex combination d.

(3) LetV be areallinear space amg Vv, v3 be vectors o¥/. Suppose; # v, andv; # v3 and
V2 # v3. Then there exists a convex combinatloof V such that for every non empty subset
AofV if {vi,vz,v3} C A thenL is a convex combination d.

(4) LetV be areal linear space atl be a non empty subset 9f ThenM is convex if and
only if {5 L;L ranges over convex combinationsMf L € ConvexComiv)} C M.

(5) LetV be areal linear space andi be a non empty subset ¥f. Then conM = {5 L;L
ranges over convex combinationsMf L € ConvexComiV)}.
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2. CoONE AND CONVEX CONE

LetV be a non empty RLS structure and Mtbe a subset df. We say thaM is cone if and only
if:

(Def. 3) For every real numberand for every vectov of V such that > 0 andv e M holdsr -ve M.

Next we state the proposition

(6) For every non empty RLS structuveand for every subséil of V such thatM = 0 holds
M is cone.

LetV be a non empty RLS structure. One can check that there exists a subsethith is
cone.

LetV be a non empty RLS structure. Observe that there exists a subéettith is empty and
cone.

LetV be a real linear space. Observe that there exists a sub¥ewbich is non empty and
cone.

Next we state three propositions:

(7) LetV be anon empty RLS structure aktlbe a cone subset &f. Suppos®/ is real linear
space-like. TheM is convex if and only if for all vectors, v of V such thau € M andve M
holdsu+v e M.

(8) LetV be areallinear space aiMibe a subset &f. ThenM is convex and cone if and only
if for every linear combinatio. of M such that the support &f = 0 and for every vectov
of V such thaw € the support of. holdsL(v) > 0 holdsy L € M.

(9) For every non empty RLS structuveand for all subset, N of V such thatM is cone
andN is cone hold$v NN is cone.
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