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Summary. In this article, there are two themes. One of them is the proof that convex
hull of a given subsetM consists of all convex combinations ofM. Another is definitions of
cone and convex cone and some properties of them.
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The articles [7], [11], [8], [2], [12], [3], [5], [1], [4], [9], [10], and [6] provide the notation and
terminology for this paper.

1. EQUALITY OF CONVEX HULL AND SET OF CONVEX COMBINATIONS

Let V be a real linear space. The functor ConvexComb(V) yields a set and is defined by:

(Def. 1) For every setL holdsL ∈ ConvexComb(V) iff L is a convex combination ofV.

LetV be a real linear space and letM be a non empty subset ofV. The functor ConvexComb(M)
yields a set and is defined as follows:

(Def. 2) For every setL holdsL ∈ ConvexComb(M) iff L is a convex combination ofM.

We now state several propositions:

(1) LetV be a real linear space andv be a vector ofV. Then there exists a convex combination
L of V such that∑L = v and for every non empty subsetA of V such thatv∈ A holdsL is a
convex combination ofA.

(2) LetV be a real linear space andv1, v2 be vectors ofV. Supposev1 6= v2. Then there exists a
convex combinationL of V such that for every non empty subsetA of V if {v1,v2} ⊆ A, then
L is a convex combination ofA.

(3) LetV be a real linear space andv1, v2, v3 be vectors ofV. Supposev1 6= v2 andv1 6= v3 and
v2 6= v3. Then there exists a convex combinationL of V such that for every non empty subset
A of V if {v1,v2,v3} ⊆ A, thenL is a convex combination ofA.

(4) LetV be a real linear space andM be a non empty subset ofV. ThenM is convex if and
only if {∑L;L ranges over convex combinations ofM: L ∈ ConvexComb(V)} ⊆M.

(5) Let V be a real linear space andM be a non empty subset ofV. Then convM = {∑L;L
ranges over convex combinations ofM: L ∈ ConvexComb(V)}.
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2. CONE AND CONVEX CONE

Let V be a non empty RLS structure and letM be a subset ofV. We say thatM is cone if and only
if:

(Def. 3) For every real numberr and for every vectorv of V such thatr > 0 andv∈M holdsr ·v∈M.

Next we state the proposition

(6) For every non empty RLS structureV and for every subsetM of V such thatM = /0 holds
M is cone.

Let V be a non empty RLS structure. One can check that there exists a subset ofV which is
cone.

LetV be a non empty RLS structure. Observe that there exists a subset ofV which is empty and
cone.

Let V be a real linear space. Observe that there exists a subset ofV which is non empty and
cone.

Next we state three propositions:

(7) LetV be a non empty RLS structure andM be a cone subset ofV. SupposeV is real linear
space-like. ThenM is convex if and only if for all vectorsu, v of V such thatu∈M andv∈M
holdsu+v∈M.

(8) LetV be a real linear space andM be a subset ofV. ThenM is convex and cone if and only
if for every linear combinationL of M such that the support ofL 6= /0 and for every vectorv
of V such thatv∈ the support ofL holdsL(v) > 0 holds∑L ∈M.

(9) For every non empty RLS structureV and for all subsetsM, N of V such thatM is cone
andN is cone holdsM∩N is cone.
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