## Convex Hull, Set of Convex Combinations and Convex Cone

Noboru Endou Gifu National College of Technology Yasunari Shidama Shinshu University Nagano

**Summary.** In this article, there are two themes. One of them is the proof that convex hull of a given subset M consists of all convex combinations of M. Another is definitions of cone and convex cone and some properties of them.

MML Identifier: CONVEX3.

WWW: http://mizar.org/JFM/Vol15/convex3.html

The articles [7], [11], [8], [2], [12], [3], [5], [1], [4], [9], [10], and [6] provide the notation and terminology for this paper.

1. EQUALITY OF CONVEX HULL AND SET OF CONVEX COMBINATIONS

Let V be a real linear space. The functor ConvexComb(V) yields a set and is defined by:

(Def. 1) For every set L holds  $L \in \text{ConvexComb}(V)$  iff L is a convex combination of V.

Let V be a real linear space and let M be a non empty subset of V. The functor ConvexComb(M) yields a set and is defined as follows:

(Def. 2) For every set L holds  $L \in \text{ConvexComb}(M)$  iff L is a convex combination of M.

We now state several propositions:

- (1) Let V be a real linear space and v be a vector of V. Then there exists a convex combination L of V such that  $\sum L = v$  and for every non empty subset A of V such that  $v \in A$  holds L is a convex combination of A.
- (2) Let V be a real linear space and  $v_1$ ,  $v_2$  be vectors of V. Suppose  $v_1 \neq v_2$ . Then there exists a convex combination L of V such that for every non empty subset A of V if  $\{v_1, v_2\} \subseteq A$ , then L is a convex combination of A.
- (3) Let V be a real linear space and  $v_1$ ,  $v_2$ ,  $v_3$  be vectors of V. Suppose  $v_1 \neq v_2$  and  $v_1 \neq v_3$  and  $v_2 \neq v_3$ . Then there exists a convex combination L of V such that for every non empty subset A of V if  $\{v_1, v_2, v_3\} \subseteq A$ , then L is a convex combination of A.
- (4) Let V be a real linear space and M be a non empty subset of V. Then M is convex if and only if  $\{\sum L; L \text{ ranges over convex combinations of } M: L \in \text{ConvexComb}(V)\} \subseteq M$ .
- (5) Let V be a real linear space and M be a non empty subset of V. Then  $conv M = \{\sum L; L \text{ ranges over convex combinations of } M: L \in ConvexComb(V)\}.$

## 2. Cone and Convex Cone

Let V be a non empty RLS structure and let M be a subset of V. We say that M is cone if and only if:

- (Def. 3) For every real number r and for every vector v of V such that r > 0 and  $v \in M$  holds  $r \cdot v \in M$ . Next we state the proposition
  - (6) For every non empty RLS structure V and for every subset M of V such that  $M = \emptyset$  holds M is cone.

Let V be a non empty RLS structure. One can check that there exists a subset of V which is cone

Let *V* be a non empty RLS structure. Observe that there exists a subset of *V* which is empty and cone.

Let V be a real linear space. Observe that there exists a subset of V which is non empty and cone.

Next we state three propositions:

- (7) Let *V* be a non empty RLS structure and *M* be a cone subset of *V*. Suppose *V* is real linear space-like. Then *M* is convex if and only if for all vectors u, v of *V* such that  $u \in M$  and  $v \in M$  holds  $u + v \in M$ .
- (8) Let V be a real linear space and M be a subset of V. Then M is convex and cone if and only if for every linear combination L of M such that the support of  $L \neq \emptyset$  and for every vector v of V such that  $v \in$  the support of L holds L(v) > 0 holds  $\sum L \in M$ .
- (9) For every non empty RLS structure V and for all subsets M, N of V such that M is cone and N is cone holds  $M \cap N$  is cone.

## REFERENCES

- [1] Grzegorz Bancerek. Cardinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/card\_1.html.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseq\_1.html.
- [3] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct\_1.html.
- [4] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct\_2.html.
- [5] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finset\_1.html.
- [6] Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Convex sets and convex combinations. *Journal of Formalized Mathematics*, 14, 2002. http://mizar.org/JFM/Vol14/convex1.html.
- [7] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [8] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [9] Wojciech A. Trybulec. Vectors in real linear space. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/rlvect\_1.html.
- [10] Wojciech A. Trybulec. Linear combinations in real linear space. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/ JFM/Vol2/rlvect\_2.html.
- [11] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset\_1.html.

[12] Edmund Woronowicz. Relations and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/relat\_1.html.

Received June 16, 2003

Published January 2, 2004