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Summary. In this paper we give Mizar formalization of concept lattices. Concept
lattices stem from the so-called formal concept analysis — a part of applied mathematics that
brings mathematical methods into the field of data analysis and knowledge processing. Our
approach follows the one given in [8].

MML Identifier: CONLAT_1.

WWW: http://mizar.org/JFM/Vol10/conlat_1.html

The articles [11], [6], [14], [12], [15], [4], [3], [17], [16], [5], [13], [9], [7], [1], [10], and [2] provide
the notation and terminology for this paper.

1. FORMAL CONTEXTS

We introduce 2-sorted which are systems
〈 objects, attributes〉,

where the objects and the attributes constitute sets.
Let C be a 2-sorted. We say thatC is empty if and only if:

(Def. 1) The objects ofC are empty and the attributes ofC are empty.

We say thatC is quasi-empty if and only if:

(Def. 2) The objects ofC are empty or the attributes ofC are empty.

Let us observe that there exists a 2-sorted which is strict and non empty and there exists a
2-sorted which is strict and non quasi-empty.

Let us observe that there exists a 2-sorted which is strict, empty, and quasi-empty.
We consider ContextStr as extensions of 2-sorted as systems
〈 objects, attributes, an information〉,

where the objects and the attributes constitute sets and the information is a relation between the
objects and the attributes.

Let us note that there exists a ContextStr which is strict and non empty and there exists a Con-
textStr which is strict and non quasi-empty.

A FormalContext is a non quasi-empty ContextStr.
Let C be a 2-sorted. An object ofC is an element of the objects ofC. An Attribute ofC is an

element of the attributes ofC.
Let C be a non quasi-empty 2-sorted. One can check that the attributes ofC is non empty and

the objects ofC is non empty.
LetC be a non quasi-empty 2-sorted. Observe that there exists a subset of the objects ofC which

is non empty and there exists a subset of the attributes ofC which is non empty.
Let C be a FormalContext, leto be an object ofC, and leta be an Attribute ofC. We say thato

is connected witha if and only if:

1 c© Association of Mizar Users
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(Def. 5)1 〈〈o, a〉〉 ∈ the information ofC.

We introduceo is not connected witha as an antonym ofo is connected witha.

2. DERIVATION OPERATORS

LetC be a FormalContext. The functor ObjectDerivationC yields a function from 2the objects ofC into
2the attributes ofC and is defined by the condition (Def. 6).

(Def. 6) LetO be an element of 2the objects ofC. Then(ObjectDerivationC)(O) = {a;a ranges over
Attributes ofC:

∧
o:object ofC (o∈O ⇒ o is connected witha)}.

LetC be a FormalContext. The functor AttributeDerivationC yielding a function from 2the attributes ofC

into 2the objects ofC is defined by the condition (Def. 7).

(Def. 7) Let A be an element of 2the attributes ofC. Then(AttributeDerivationC)(A) = {o;o ranges
over objects ofC:

∧
a:Attribute of C (a∈ A ⇒ o is connected witha)}.

The following propositions are true:

(1) LetC be a FormalContext ando be an object ofC. Then(ObjectDerivationC)({o}) = {a;a
ranges over Attributes ofC: o is connected witha}.

(2) LetC be a FormalContext anda be an Attribute ofC. Then(AttributeDerivationC)({a}) =
{o;o ranges over objects ofC: o is connected witha}.

(3) For every FormalContextC and for all subsetsO1, O2 of the objects ofC such thatO1⊆O2

holds(ObjectDerivationC)(O2)⊆ (ObjectDerivationC)(O1).

(4) For every FormalContextC and for all subsetsA1, A2 of the attributes ofC such thatA1⊆A2

holds(AttributeDerivationC)(A2)⊆ (AttributeDerivationC)(A1).

(5) For every FormalContextC and for every subsetO of the objects ofC holds O ⊆
(AttributeDerivationC)((ObjectDerivationC)(O)).

(6) For every FormalContextC and for every subsetA of the attributes ofC holds A ⊆
(ObjectDerivationC)((AttributeDerivationC)(A)).

(7) For every FormalContextC and for every subsetO of the objects ofC holds
(ObjectDerivationC)(O)= (ObjectDerivationC)((AttributeDerivationC)((ObjectDerivationC)(O))).

(8) For every FormalContextC and for every subsetA of the attributes ofC holds
(AttributeDerivationC)(A)= (AttributeDerivationC)((ObjectDerivationC)((AttributeDerivationC)(A))).

(9) Let C be a FormalContext,O be a subset of the objects ofC, andA be a subset of the
attributes ofC. ThenO⊆ (AttributeDerivationC)(A) if and only if [:O, A:]⊆ the information
of C.

(10) Let C be a FormalContext,O be a subset of the objects ofC, andA be a subset of the
attributes ofC. ThenA⊆ (ObjectDerivationC)(O) if and only if [:O, A:] ⊆ the information
of C.

(11) Let C be a FormalContext,O be a subset of the objects ofC, and A be a sub-
set of the attributes ofC. Then O ⊆ (AttributeDerivationC)(A) if and only if A ⊆
(ObjectDerivationC)(O).

LetC be a FormalContext. The functorφ(C) yields a map from 2the objects ofC
⊆ into 2the attributes ofC

⊆
and is defined by:

(Def. 8) φ(C) = ObjectDerivationC.

1 The definitions (Def. 3) and (Def. 4) have been removed.
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LetC be a FormalContext. The functor psiC yields a map from 2the attributes ofC
⊆ into 2the objects ofC

⊆
and is defined as follows:

(Def. 9) psiC = AttributeDerivationC.

Let P, Rbe non empty relational structures and letC1 be a connection betweenP andR. We say
thatC1 is co-Galois if and only if the condition (Def. 10) is satisfied.

(Def. 10) There exists a mapf from P into Rand there exists a mapg from R into P such that

(i) C1 = 〈〈 f , g〉〉,
(ii) f is antitone,

(iii) g is antitone, and

(iv) for all elementsp1, p2 of P and for all elementsr1, r2 of R holds p1 ≤ g( f (p1)) and
r1 ≤ f (g(r1)).

One can prove the following propositions:

(13)2 Let P, R be non empty posets,C1 be a connection betweenP andR, f be a map fromP
into R, andg be a map fromR into P. SupposeC1 = 〈〈 f , g〉〉. ThenC1 is co-Galois if and only
if for every elementp of P and for every elementr of Rholdsp≤ g(r) iff r ≤ f (p).

(14) Let P, R be non empty posets andC1 be a connection betweenP andR. SupposeC1 is
co-Galois. Letf be a map fromP into R andg be a map fromR into P. If C1 = 〈〈 f , g〉〉, then
f = f · (g· f ) andg = g· ( f ·g).

(15) For every FormalContextC holds〈〈φ(C), psiC〉〉 is co-Galois.

(16) For every FormalContextC and for all subsetsO1, O2 of the objects ofC holds
(ObjectDerivationC)(O1∪O2) = (ObjectDerivationC)(O1)∩ (ObjectDerivationC)(O2).

(17) For every FormalContextC and for all subsetsA1, A2 of the attributes ofC holds
(AttributeDerivationC)(A1∪A2)= (AttributeDerivationC)(A1)∩(AttributeDerivationC)(A2).

(18) For every FormalContextC holds(ObjectDerivationC)( /0) = the attributes ofC.

(19) For every FormalContextC holds(AttributeDerivationC)( /0) = the objects ofC.

3. FORMAL CONCEPTS

Let C be a 2-sorted. We consider ConceptStr overC as systems
〈 an extent, an intent〉,

where the extent is a subset of the objects ofC and the intent is a subset of the attributes ofC.
Let C be a 2-sorted and letC2 be a ConceptStr overC. We say thatC2 is empty if and only if:

(Def. 11) The extent ofC2 is empty and the intent ofC2 is empty.

We say thatC2 is quasi-empty if and only if:

(Def. 12) The extent ofC2 is empty or the intent ofC2 is empty.

LetC be a non quasi-empty 2-sorted. One can check that there exists a ConceptStr overC which
is strict and non empty and there exists a ConceptStr overC which is strict and quasi-empty.

Let C be an empty 2-sorted. One can check that every ConceptStr overC is empty.
Let C be a quasi-empty 2-sorted. One can check that every ConceptStr overC is quasi-empty.
Let C be a FormalContext and letC2 be a ConceptStr overC. We say thatC2 is concept-like if

and only if:

(Def. 13) (ObjectDerivationC)(the extent ofC2) = the intent ofC2 and(AttributeDerivationC)(the
intent ofC2) = the extent ofC2.

2 The proposition (12) has been removed.
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Let C be a FormalContext. Observe that there exists a ConceptStr overC which is concept-like
and non empty.

Let C be a FormalContext. A FormalConcept ofC is a concept-like non empty ConceptStr over
C.

Let C be a FormalContext. Observe that there exists a FormalConcept ofC which is strict.
The following four propositions are true:

(20) LetC be a FormalContext andO be a subset of the objects ofC. Then

(i) 〈(AttributeDerivationC)((ObjectDerivationC)(O)),(ObjectDerivationC)(O)〉 is a For-
malConcept ofC, and

(ii) for every subsetO′ of the objects ofC and for every subsetA′ of the at-
tributes of C such that 〈O′,A′〉 is a FormalConcept ofC and O ⊆ O′ holds
(AttributeDerivationC)((ObjectDerivationC)(O))⊆O′.

(21) Let C be a FormalContext andO be a subset of the objects ofC. Then there exists a
subsetA of the attributes ofC such that〈O,A〉 is a FormalConcept ofC if and only if
(AttributeDerivationC)((ObjectDerivationC)(O)) = O.

(22) LetC be a FormalContext andA be a subset of the attributes ofC. Then

(i) 〈(AttributeDerivationC)(A),(ObjectDerivationC)((AttributeDerivationC)(A))〉 is a For-
malConcept ofC, and

(ii) for every subsetO′ of the objects ofC and for every subsetA′ of the at-
tributes of C such that 〈O′,A′〉 is a FormalConcept ofC and A ⊆ A′ holds
(ObjectDerivationC)((AttributeDerivationC)(A))⊆ A′.

(23) Let C be a FormalContext andA be a subset of the attributes ofC. Then there exists
a subsetO of the objects ofC such that〈O,A〉 is a FormalConcept ofC if and only if
(ObjectDerivationC)((AttributeDerivationC)(A)) = A.

Let C be a FormalContext and letC2 be a ConceptStr overC. We say thatC2 is universal if and
only if:

(Def. 14) The extent ofC2 = the objects ofC.

Let C be a FormalContext and letC2 be a ConceptStr overC. We say thatC2 is co-universal if
and only if:

(Def. 15) The intent ofC2 = the attributes ofC.

Let C be a FormalContext. Note that there exists a FormalConcept ofC which is strict and
universal and there exists a FormalConcept ofC which is strict and co-universal.

LetC be a FormalContext. The functor Concept−with−all−ObjectsC yields a strict universal
FormalConcept ofC and is defined by the condition (Def. 16).

(Def. 16) There exists a subsetO of the objects ofC and there exists a subsetA of the attributes ofC
such that Concept−with−all−ObjectsC = 〈O,A〉 andO = (AttributeDerivationC)( /0) and
A = (ObjectDerivationC)((AttributeDerivationC)( /0)).

Let C be a FormalContext. The functor Concept−with−all−AttributesC yielding a strict co-
universal FormalConcept ofC is defined by the condition (Def. 17).

(Def. 17) There exists a subsetO of the objects of C and there exists a subsetA of
the attributes ofC such that Concept−with−all−AttributesC = 〈O,A〉 and O =
(AttributeDerivationC)((ObjectDerivationC)( /0)) andA = (ObjectDerivationC)( /0).

Next we state several propositions:

(24) LetC be a FormalContext. Then the extent of Concept−with−all−ObjectsC = the ob-
jects ofC and the intent of Concept−with−all−AttributesC = the attributes ofC.
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(25) LetC be a FormalContext andC2 be a FormalConcept ofC. Then

(i) if the extent ofC2 = /0, thenC2 is co-universal, and

(ii) if the intent ofC2 = /0, thenC2 is universal.

(26) LetC be a FormalContext andC2 be a strict FormalConcept ofC. Then

(i) if the extent ofC2 = /0, thenC2 = Concept−with−all−AttributesC, and

(ii) if the intent ofC2 = /0, thenC2 = Concept−with−all−ObjectsC.

(27) LetC be a FormalContext andC2 be a quasi-empty ConceptStr overC. SupposeC2 is a
FormalConcept ofC. ThenC2 is universal and co-universal.

(28) Let C be a FormalContext andC2 be a quasi-empty ConceptStr overC. If C2

is a strict FormalConcept ofC, then C2 = Concept−with−all−ObjectsC or C2 =
Concept−with−all−AttributesC.

Let C be a FormalContext. A non empty set is called a Set of FormalConcepts ofC if:

(Def. 18) For every setX such thatX ∈ it holdsX is a FormalConcept ofC.

Let C be a FormalContext and letF1 be a Set of FormalConcepts ofC. We see that the element
of F1 is a FormalConcept ofC.

LetC be a FormalContext and letC3, C4 be FormalConcepts ofC. We say thatC3 is SubConcept
of C4 if and only if:

(Def. 19) The extent ofC3 ⊆ the extent ofC4.

We introduceC4 is SuperConcept ofC3 as a synonym ofC3 is SubConcept ofC4.
Next we state three propositions:

(31)3 Let C be a FormalContext andC3, C4 be FormalConcepts ofC. ThenC3 is SubConcept of
C4 if and only if the intent ofC4 ⊆ the intent ofC3.

(33)4 Let C be a FormalContext andC3, C4 be FormalConcepts ofC. ThenC3 is SuperConcept
of C4 if and only if the intent ofC3 ⊆ the intent ofC4.

(34) Let C be a FormalContext andC2 be a FormalConcept ofC. ThenC2 is SubConcept
of Concept−with−all−ObjectsC and Concept−with−all−AttributesC is SubConcept of
C2.

4. CONCEPTLATTICES

Let C be a FormalContext. The functor B−carrierC yields a non empty set and is defined by the
condition (Def. 20).

(Def. 20) B−carrierC = {〈E, I〉;E ranges over subsets of the objects ofC, I ranges over sub-
sets of the attributes ofC: 〈E, I〉 is non empty∧ (ObjectDerivationC)(E) = I ∧
(AttributeDerivationC)(I) = E}.

Let C be a FormalContext. Then B−carrierC is a Set of FormalConcepts ofC.
Let C be a FormalContext. Observe that B−carrierC is non empty.
We now state the proposition

(35) For every FormalContextC and for every setC2 holdsC2 ∈ B−carrierC iff C2 is a strict
FormalConcept ofC.

Let C be a FormalContext. The functor B−meetC yields a binary operation on B−carrierC
and is defined by the condition (Def. 21).

3 The propositions (29) and (30) have been removed.
4 The proposition (32) has been removed.
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(Def. 21) Let C3, C4 be strict FormalConcepts ofC. Then there exists a subsetO of
the objects of C and there exists a subsetA of the attributes ofC such that
(B−meetC)(C3, C4) = 〈O,A〉 and O = (the extent ofC3) ∩ (the extent ofC4) and A =
(ObjectDerivationC)((AttributeDerivationC)((the intent ofC3)∪ (the intent ofC4))).

LetC be a FormalContext. The functor B− joinC yields a binary operation on B−carrierC and
is defined by the condition (Def. 22).

(Def. 22) LetC3, C4 be strict FormalConcepts ofC. Then there exists a subsetO of the objects ofC
and there exists a subsetA of the attributes ofC such that(B− joinC)(C3, C4) = 〈O,A〉 and
O= (AttributeDerivationC)((ObjectDerivationC)((the extent ofC3)∪(the extent ofC4))) and
A = (the intent ofC3)∩ (the intent ofC4).

The following propositions are true:

(36) For every FormalContextC and for all strict FormalConceptsC3, C4 of C holds
(B−meetC)(C3, C4) = (B−meetC)(C4, C3).

(37) For every FormalContextC and for all strict FormalConceptsC3, C4 of C holds
(B− joinC)(C3, C4) = (B− joinC)(C4, C3).

(38) For every FormalContextC and for all strict FormalConceptsC3, C4, C5 of C holds
(B−meetC)(C3, (B−meetC)(C4, C5)) = (B−meetC)((B−meetC)(C3, C4), C5).

(39) For every FormalContextC and for all strict FormalConceptsC3, C4, C5 of C holds
(B− joinC)(C3, (B− joinC)(C4, C5)) = (B− joinC)((B− joinC)(C3, C4), C5).

(40) For every FormalContextC and for all strict FormalConceptsC3, C4 of C holds
(B− joinC)((B−meetC)(C3, C4), C4) = C4.

(41) For every FormalContextC and for all strict FormalConceptsC3, C4 of C holds
(B−meetC)(C3, (B− joinC)(C3, C4)) = C3.

(42) For every FormalContextC and for every strict FormalConceptC2 of C holds
(B−meetC)(C2, Concept−with−all−ObjectsC) = C2.

(43) For every FormalContextC and for every strict FormalConceptC2 of C holds
(B− joinC)(C2, Concept−with−all−ObjectsC) = Concept−with−all−ObjectsC.

(44) For every FormalContextC and for every strict FormalConceptC2 of C holds
(B− joinC)(C2, Concept−with−all−AttributesC) = C2.

(45) For every FormalContextC and for every strict FormalConceptC2 of C holds
(B−meetC)(C2, Concept−with−all−AttributesC) = Concept−with−all−AttributesC.

Let C be a FormalContext. The functor ConceptLatticeC yielding a strict non empty lattice
structure is defined as follows:

(Def. 23) ConceptLatticeC = 〈B−carrierC,B− joinC,B−meetC〉.

Next we state the proposition

(46) For every FormalContextC holds ConceptLatticeC is a lattice.

LetC be a FormalContext. One can verify that ConceptLatticeC is strict, non empty, and lattice-
like.

Let C be a FormalContext and letSbe a non empty subset of ConceptLatticeC. We see that the
element ofS is a FormalConcept ofC.

Let C be a FormalContext and letC2 be an element of ConceptLatticeC. The functorC2
T yield-

ing a strict FormalConcept ofC is defined as follows:

(Def. 24) C2
T = C2.
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We now state two propositions:

(47) For every FormalContextC and for all elementsC3, C4 of ConceptLatticeC holdsC3 vC4

iff C3
T is SubConcept ofC4

T.

(48) For every FormalContextC holds ConceptLatticeC is a complete lattice.

Let C be a FormalContext. One can verify that ConceptLatticeC is complete.
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