Introduction to Concept Lattices

Christoph Schwarzweller University of Tübingen

Summary. In this paper we give Mizar formalization of concept lattices. Concept lattices stem from the so-called formal concept analysis — a part of applied mathematics that brings mathematical methods into the field of data analysis and knowledge processing. Our approach follows the one given in [8].

MML Identifier: CONLAT_1.

WWW: http://mizar.org/JFM/Vol10/conlat_1.html

The articles [11], [6], [14], [12], [15], [4], [3], [17], [16], [5], [13], [9], [7], [1], [10], and [2] provide the notation and terminology for this paper.

1. FORMAL CONTEXTS

We introduce 2-sorted which are systems

 \langle objects, attributes \rangle ,

where the objects and the attributes constitute sets.

Let *C* be a 2-sorted. We say that *C* is empty if and only if:

(Def. 1) The objects of *C* are empty and the attributes of *C* are empty.

We say that *C* is quasi-empty if and only if:

(Def. 2) The objects of C are empty or the attributes of C are empty.

Let us observe that there exists a 2-sorted which is strict and non empty and there exists a 2-sorted which is strict and non quasi-empty.

Let us observe that there exists a 2-sorted which is strict, empty, and quasi-empty.

We consider ContextStr as extensions of 2-sorted as systems

⟨ objects, attributes, an information ⟩,

where the objects and the attributes constitute sets and the information is a relation between the objects and the attributes.

Let us note that there exists a ContextStr which is strict and non empty and there exists a ContextStr which is strict and non quasi-empty.

A FormalContext is a non quasi-empty ContextStr.

Let C be a 2-sorted. An object of C is an element of the objects of C. An Attribute of C is an element of the attributes of C.

Let C be a non quasi-empty 2-sorted. One can check that the attributes of C is non empty and the objects of C is non empty.

Let *C* be a non quasi-empty 2-sorted. Observe that there exists a subset of the objects of *C* which is non empty and there exists a subset of the attributes of *C* which is non empty.

Let C be a FormalContext, let o be an object of C, and let a be an Attribute of C. We say that o is connected with a if and only if:

 $(\text{Def. 5})^1 \quad \langle o, a \rangle \in \text{the information of } C.$

We introduce o is not connected with a as an antonym of o is connected with a.

2. Derivation Operators

Let C be a FormalContext. The functor ObjectDerivation C yields a function from $2^{\text{the objects of } C}$ into $2^{\text{the attributes of } C}$ and is defined by the condition (Def. 6).

(Def. 6) Let O be an element of $2^{\text{the objects of }C}$. Then $(\text{ObjectDerivation }C)(O) = \{a; a \text{ ranges over Attributes of }C: \bigwedge_{o:\text{object of }C} (o \in O \Rightarrow o \text{ is connected with }a)\}.$

Let C be a FormalContext. The functor AttributeDerivation C yielding a function from $2^{\text{the attributes of } C}$ into $2^{\text{the objects of } C}$ is defined by the condition (Def. 7).

(Def. 7) Let A be an element of $2^{\text{the attributes of }C}$. Then $(\text{Attribute Derivation }C)(A) = \{o; o \text{ ranges over objects of }C: \bigwedge_{a:\text{Attribute of }C} (a \in A \Rightarrow o \text{ is connected with }a)\}.$

The following propositions are true:

- (1) Let *C* be a FormalContext and *o* be an object of *C*. Then (ObjectDerivation *C*)($\{o\}$) = $\{a; a \text{ ranges over Attributes of } C$: *o* is connected with $a\}$.
- (2) Let C be a FormalContext and a be an Attribute of C. Then (AttributeDerivation C)($\{a\}$) = $\{o; o \text{ ranges over objects of } C: o \text{ is connected with } a\}$.
- (3) For every FormalContext C and for all subsets O_1 , O_2 of the objects of C such that $O_1 \subseteq O_2$ holds $(ObjectDerivation C)(O_2) \subseteq (ObjectDerivation C)(O_1)$.
- (4) For every FormalContext C and for all subsets A_1, A_2 of the attributes of C such that $A_1 \subseteq A_2$ holds (AttributeDerivation C)(A_2) \subseteq (AttributeDerivation C)(A_1).
- (5) For every FormalContext C and for every subset O of the objects of C holds $O \subseteq (AttributeDerivation <math>C)((ObjectDerivation C)(O))$.
- (6) For every FormalContext C and for every subset A of the attributes of C holds $A \subseteq (\text{ObjectDerivation } C)((\text{AttributeDerivation } C)(A))$.
- (7) For every FormalContext C and for every subset O of the objects of C holds (ObjectDerivation <math>C)(O) = (ObjectDerivation C)((AttributeDerivation C)((ObjectDerivation <math>C)(O))).
- (8) For every FormalContext C and for every subset A of the attributes of C holds (AttributeDerivation C) ((ObjectDerivation C) ((AttributeDerivation C)).
- (9) Let C be a FormalContext, O be a subset of the objects of C, and A be a subset of the attributes of C. Then $O \subseteq (AttributeDerivation <math>C)(A)$ if and only if $[:O,A:] \subseteq$ the information of C.
- (10) Let C be a FormalContext, O be a subset of the objects of C, and A be a subset of the attributes of C. Then $A \subseteq (\text{ObjectDerivation } C)(O)$ if and only if $[:O,A:] \subseteq \text{the information of } C$.
- (11) Let C be a FormalContext, O be a subset of the objects of C, and A be a subset of the attributes of C. Then $O \subseteq (AttributeDerivation <math>C)(A)$ if and only if $A \subseteq (ObjectDerivation C)(O)$.

Let C be a FormalContext. The functor $\phi(C)$ yields a map from $2^{\text{the objects of }C}_{\subseteq}$ into $2^{\text{the attributes of }C}_{\subseteq}$ and is defined by:

(Def. 8) $\phi(C) = \text{ObjectDerivation } C$.

¹ The definitions (Def. 3) and (Def. 4) have been removed.

Let C be a FormalContext. The functor psi C yields a map from $2^{\text{the attributes of } C}$ into $2^{\text{the objects of } C}$ and is defined as follows:

(Def. 9) psi C = Attribute Derivation C.

Let P, R be non empty relational structures and let C_1 be a connection between P and R. We say that C_1 is co-Galois if and only if the condition (Def. 10) is satisfied.

- (Def. 10) There exists a map f from P into R and there exists a map g from R into P such that
 - (i) $C_1 = \langle f, g \rangle$,
 - (ii) f is antitone,
 - (iii) g is antitone, and
 - (iv) for all elements p_1 , p_2 of P and for all elements r_1 , r_2 of R holds $p_1 \le g(f(p_1))$ and $r_1 \le f(g(r_1))$.

One can prove the following propositions:

- (13)² Let P, R be non empty posets, C_1 be a connection between P and R, f be a map from P into R, and g be a map from R into P. Suppose $C_1 = \langle f, g \rangle$. Then C_1 is co-Galois if and only if for every element p of P and for every element r of R holds $p \leq g(r)$ iff $r \leq f(p)$.
- (14) Let P, R be non empty posets and C_1 be a connection between P and R. Suppose C_1 is co-Galois. Let f be a map from P into R and g be a map from R into P. If $C_1 = \langle f, g \rangle$, then $f = f \cdot (g \cdot f)$ and $g = g \cdot (f \cdot g)$.
- (15) For every FormalContext *C* holds $\langle \phi(C), \operatorname{psi} C \rangle$ is co-Galois.
- (16) For every FormalContext C and for all subsets O_1 , O_2 of the objects of C holds $(\text{ObjectDerivation } C)(O_1 \cup O_2) = (\text{ObjectDerivation } C)(O_1) \cap (\text{ObjectDerivation } C)(O_2)$.
- (17) For every FormalContext C and for all subsets A_1 , A_2 of the attributes of C holds $(AttributeDerivation <math>C)(A_1 \cup A_2) = (AttributeDerivation <math>C)(A_1) \cap (AttributeDerivation <math>C)(A_2)$.
- (18) For every FormalContext C holds (ObjectDerivation C)(\emptyset) = the attributes of C.
- (19) For every FormalContext *C* holds (AttributeDerivation C)(\emptyset) = the objects of *C*.

3. FORMAL CONCEPTS

Let C be a 2-sorted. We consider ConceptStr over C as systems \langle an extent, an intent \rangle ,

where the extent is a subset of the objects of C and the intent is a subset of the attributes of C. Let C be a 2-sorted and let C_2 be a ConceptStr over C. We say that C_2 is empty if and only if:

(Def. 11) The extent of C_2 is empty and the intent of C_2 is empty.

We say that C_2 is quasi-empty if and only if:

(Def. 12) The extent of C_2 is empty or the intent of C_2 is empty.

Let *C* be a non quasi-empty 2-sorted. One can check that there exists a ConceptStr over *C* which is strict and non empty and there exists a ConceptStr over *C* which is strict and quasi-empty.

Let C be an empty 2-sorted. One can check that every ConceptStr over C is empty.

Let C be a quasi-empty 2-sorted. One can check that every ConceptStr over C is quasi-empty.

Let C be a FormalContext and let C_2 be a ConceptStr over C. We say that C_2 is concept-like if and only if:

(Def. 13) (ObjectDerivation C)(the extent of C_2) = the intent of C_2 and (AttributeDerivation C)(the intent of C_2) = the extent of C_2 .

² The proposition (12) has been removed.

Let *C* be a FormalContext. Observe that there exists a ConceptStr over *C* which is concept-like and non empty.

Let *C* be a FormalContext. A FormalConcept of *C* is a concept-like non empty ConceptStr over *C*.

Let *C* be a FormalContext. Observe that there exists a FormalConcept of *C* which is strict. The following four propositions are true:

- (20) Let C be a FormalContext and O be a subset of the objects of C. Then
 - (i) $\langle (\text{AttributeDerivation } C)((\text{ObjectDerivation } C)(O)), (\text{ObjectDerivation } C)(O) \rangle$ is a FormalConcept of C, and
- (ii) for every subset O' of the objects of C and for every subset A' of the attributes of C such that $\langle O', A' \rangle$ is a FormalConcept of C and $O \subseteq O'$ holds (AttributeDerivationC)((ObjectDerivationC)(O) C:
- (21) Let C be a FormalContext and O be a subset of the objects of C. Then there exists a subset A of the attributes of C such that $\langle O, A \rangle$ is a FormalConcept of C if and only if (AttributeDerivation C)((ObjectDerivation C)(O)) = O.
- (22) Let C be a FormalContext and A be a subset of the attributes of C. Then
 - (i) $\langle (\text{AttributeDerivation } C)(A), (\text{ObjectDerivation } C)((\text{AttributeDerivation } C)(A)) \rangle$ is a FormalConcept of C, and
- (ii) for every subset O' of the objects of C and for every subset A' of the attributes of C such that $\langle O', A' \rangle$ is a FormalConcept of C and $A \subseteq A'$ holds $(\text{ObjectDerivation } C)((\text{AttributeDerivation } C)(A)) \subseteq A'$.
- (23) Let C be a FormalContext and A be a subset of the attributes of C. Then there exists a subset O of the objects of C such that $\langle O, A \rangle$ is a FormalConcept of C if and only if (ObjectDerivation C)((AttributeDerivation C)(A)) = A.

Let C be a FormalContext and let C_2 be a ConceptStr over C. We say that C_2 is universal if and only if:

(Def. 14) The extent of C_2 = the objects of C.

Let C be a FormalContext and let C_2 be a ConceptStr over C. We say that C_2 is co-universal if and only if:

(Def. 15) The intent of C_2 = the attributes of C.

Let C be a FormalContext. Note that there exists a FormalConcept of C which is strict and universal and there exists a FormalConcept of C which is strict and co-universal.

Let *C* be a FormalContext. The functor Concept – with – all – Objects *C* yields a strict universal FormalConcept of *C* and is defined by the condition (Def. 16).

(Def. 16) There exists a subset O of the objects of C and there exists a subset A of the attributes of C such that Concept – with – all – Objects $C = \langle O, A \rangle$ and $O = (AttributeDerivation <math>C)(\emptyset)$ and $A = (ObjectDerivation <math>C)((AttributeDerivation C)(\emptyset))$.

Let C be a FormalContext. The functor Concept – with – all – Attributes C yielding a strict couniversal FormalConcept of C is defined by the condition (Def. 17).

(Def. 17) There exists a subset O of the objects of C and there exists a subset A of the attributes of C such that $\operatorname{Concept-with-all-Attributes} C = \langle O, A \rangle$ and $O = (\operatorname{AttributeDerivation} C)((\operatorname{ObjectDerivation} C)(\emptyset))$ and $A = (\operatorname{ObjectDerivation} C)(\emptyset)$.

Next we state several propositions:

(24) Let C be a FormalContext. Then the extent of Concept – with – all – Objects C = the objects of C and the intent of Concept – with – all – Attributes C = the attributes of C.

- (25) Let C be a FormalContext and C_2 be a FormalConcept of C. Then
 - (i) if the extent of $C_2 = \emptyset$, then C_2 is co-universal, and
- (ii) if the intent of $C_2 = \emptyset$, then C_2 is universal.
- (26) Let C be a FormalContext and C_2 be a strict FormalConcept of C. Then
 - (i) if the extent of $C_2 = \emptyset$, then $C_2 = \text{Concept} \text{with} \text{all} \text{Attributes} C$, and
- (ii) if the intent of $C_2 = \emptyset$, then $C_2 = \text{Concept} \text{with} \text{all} \text{Objects } C$.
- (27) Let C be a FormalContext and C_2 be a quasi-empty ConceptStr over C. Suppose C_2 is a FormalConcept of C. Then C_2 is universal and co-universal.
- (28) Let C be a FormalContext and C_2 be a quasi-empty ConceptStr over C. If C_2 is a strict FormalConcept of C, then $C_2 = \text{Concept} \text{with} \text{all} \text{Objects} C$ or $C_2 = \text{Concept} \text{with} \text{all} \text{Attributes} C$.

Let C be a FormalContext. A non empty set is called a Set of FormalConcepts of C if:

(Def. 18) For every set X such that $X \in \text{it holds } X$ is a FormalConcept of C.

Let C be a FormalContext and let F_1 be a Set of FormalConcepts of C. We see that the element of F_1 is a FormalConcept of C.

Let C be a FormalContext and let C_3 , C_4 be FormalConcepts of C. We say that C_3 is SubConcept of C_4 if and only if:

(Def. 19) The extent of $C_3 \subseteq$ the extent of C_4 .

We introduce C_4 is SuperConcept of C_3 as a synonym of C_3 is SubConcept of C_4 . Next we state three propositions:

- (31)³ Let *C* be a FormalContext and C_3 , C_4 be FormalConcepts of *C*. Then C_3 is SubConcept of C_4 if and only if the intent of $C_4 \subseteq$ the intent of C_3 .
- (33)⁴ Let C be a FormalContext and C_3 , C_4 be FormalConcepts of C. Then C_3 is SuperConcept of C_4 if and only if the intent of $C_3 \subseteq$ the intent of C_4 .
- (34) Let C be a FormalContext and C_2 be a FormalConcept of C. Then C_2 is SubConcept of Concept with all Objects C and Concept with all Attributes C is SubConcept of C_2 .

4. CONCEPT LATTICES

Let C be a FormalContext. The functor B – carrier C yields a non empty set and is defined by the condition (Def. 20).

(Def. 20) B – carrier $C = \{\langle E, I \rangle; E \text{ ranges over subsets of the objects of } C, I \text{ ranges over subsets of the attributes of } C: \langle E, I \rangle \text{ is non empty } \wedge \text{ (ObjectDerivation } C)(E) = I \wedge \text{ (AttributeDerivation } C)(I) = E\}.$

Let C be a FormalContext. Then B – carrier C is a Set of FormalConcepts of C. Let C be a FormalContext. Observe that B – carrier C is non empty.

We now state the proposition

(35) For every FormalContext C and for every set C_2 holds $C_2 \in B$ – carrier C iff C_2 is a strict FormalConcept of C.

Let C be a FormalContext. The functor B - meet C yields a binary operation on B - carrier C and is defined by the condition (Def. 21).

³ The propositions (29) and (30) have been removed.

⁴ The proposition (32) has been removed.

(Def. 21) Let C_3 , C_4 be strict FormalConcepts of C. Then there exists a subset O of the objects of C and there exists a subset A of the attributes of C such that $(B - \text{meet} C)(C_3, C_4) = \langle O, A \rangle$ and $O = (\text{the extent of } C_3) \cap (\text{the extent of } C_4)$ and $A = (\text{ObjectDerivation } C)((\text{AttributeDerivation } C)((\text{the intent of } C_3) \cup (\text{the intent of } C_4))).$

Let C be a FormalContext. The functor B - join C yields a binary operation on B - carrier C and is defined by the condition (Def. 22).

(Def. 22) Let C_3 , C_4 be strict FormalConcepts of C. Then there exists a subset O of the objects of C and there exists a subset A of the attributes of C such that $(B - \text{join } C)(C_3, C_4) = \langle O, A \rangle$ and $O = (\text{AttributeDerivation } C)((\text{ObjectDerivation } C)((\text{the extent of } C_3) \cup (\text{the extent of } C_4)))$ and $A = (\text{the intent of } C_3) \cap (\text{the intent of } C_4)$.

The following propositions are true:

- (36) For every FormalContext C and for all strict FormalConcepts C_3 , C_4 of C holds $(B \text{meet } C)(C_3, C_4) = (B \text{meet } C)(C_4, C_3)$.
- (37) For every FormalContext C and for all strict FormalConcepts C_3 , C_4 of C holds $(B join C)(C_3, C_4) = (B join C)(C_4, C_3)$.
- (38) For every FormalContext C and for all strict FormalConcepts C_3 , C_4 , C_5 of C holds $(B \text{meet } C)(C_3, (B \text{meet } C)(C_4, C_5)) = (B \text{meet } C)((B \text{meet } C)(C_3, C_4), C_5)$.
- (39) For every FormalContext C and for all strict FormalConcepts C_3 , C_4 , C_5 of C holds $(B join C)(C_3, (B join C)(C_4, C_5)) = (B join C)((B join C)(C_3, C_4), C_5)$.
- (40) For every FormalContext C and for all strict FormalConcepts C_3 , C_4 of C holds $(B join C)((B meet C)(C_3, C_4), C_4) = C_4$.
- (41) For every FormalContext C and for all strict FormalConcepts C_3 , C_4 of C holds $(B \text{meet } C)(C_3, (B \text{join } C)(C_3, C_4)) = C_3$.
- (42) For every FormalContext C and for every strict FormalConcept C_2 of C holds $(B meet C)(C_2, Concept with all Objects <math>C) = C_2$.
- (43) For every FormalContext C and for every strict FormalConcept C_2 of C holds $(B-join C)(C_2, Concept-with-all-Objects <math>C) = Concept-with-all-Objects <math>C$.
- (44) For every FormalContext C and for every strict FormalConcept C_2 of C holds $(B join C)(C_2, Concept with all Attributes <math>C) = C_2$.
- (45) For every FormalContext C and for every strict FormalConcept C_2 of C holds $(B meet C)(C_2, Concept with all Attributes <math>C) = Concept with all Attributes <math>C$.

Let C be a FormalContext. The functor ConceptLattice C yielding a strict non empty lattice structure is defined as follows:

(Def. 23) ConceptLattice $C = \langle B - carrier C, B - join C, B - meet C \rangle$.

Next we state the proposition

(46) For every FormalContext C holds ConceptLattice C is a lattice.

Let *C* be a FormalContext. One can verify that ConceptLattice *C* is strict, non empty, and lattice-like.

Let *C* be a FormalContext and let *S* be a non empty subset of ConceptLattice *C*. We see that the element of *S* is a FormalConcept of *C*.

Let C be a FormalContext and let C_2 be an element of ConceptLattice C. The functor C_2^T yielding a strict FormalConcept of C is defined as follows:

(Def. 24) $C_2^T = C_2$.

We now state two propositions:

- (47) For every FormalContext C and for all elements C_3 , C_4 of ConceptLattice C holds $C_3 \subseteq C_4$ iff C_3^T is SubConcept of C_4^T .
- (48) For every FormalContext C holds ConceptLattice C is a complete lattice.

Let *C* be a FormalContext. One can verify that ConceptLattice *C* is complete.

REFERENCES

- [1] Grzegorz Bancerek. Complete lattices. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/lattice3.html.
- [2] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/ JFM/Vol8/waybel_0.html.
- [3] Czesław Byliński. Binary operations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/binop_1.html.
- [4] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_1.html.
- [5] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [6] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.
- [7] Czesław Byliński. Galois connections. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/waybel_1.html.
- [8] Bernhard Ganter and Rudolf Wille. Formal Concept Analysis. Springer Verlag, Berlin, Heidelberg, New York, 1996. (written in German).
- [9] Adam Grabowski and Robert Milewski. Boolean posets, posets under inclusion and products of relational structures. *Journal of Formalized Mathematics*, 8, 1996. http://mizar.org/JFM/Vol8/yellow_1.html.
- [10] Beata Padlewska. Families of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/setfam_1.html.
- [11] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [12] Andrzej Trybulec. Tuples, projections and Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/mcart_1.html.
- [13] Wojciech A. Trybulec. Partially ordered sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/orders_ 1.html.
- [15] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.
- [16] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relset 1.html.
- [17] Stanisław Żukowski. Introduction to lattice theory. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/lattices.html

Received October 2, 1998

Published January 2, 2004