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Summary. In this paper we give Mizar formalization of concept lattices. Concept
lattices stem from the so-called formal concept analysis — a part of applied mathematics that
brings mathematical methods into the field of data analysis and knowledge processing. Our
approach follows the one given in [8].

MML Identifier: CONLAT_1.

WWW: http://mizar.org/JFM/Voll0/conlat_1.html

The articles([11],[[5],[114],[112],115] [T4] [18], 1171, 116] [15] [113], 191, 17],11],[[10], and [2] provide
the notation and terminology for this paper.

1. FORMAL CONTEXTS

We introduce 2-sorted which are systems
( objects, attributes,

where the objects and the attributes constitute sets.
LetC be a 2-sorted. We say th@tis empty if and only if:

(Def. 1) The objects of are empty and the attributes ©fare empty.
We say thaC is quasi-empty if and only if:
(Def. 2) The objects of are empty or the attributes Gfare empty.

Let us observe that there exists a 2-sorted which is strict and non empty and there exists a
2-sorted which is strict and non quasi-empty.

Let us observe that there exists a 2-sorted which is strict, empty, and quasi-empty.

We consider ContextStr as extensions of 2-sorted as systems

( objects, attributes, an information
where the objects and the attributes constitute sets and the information is a relation between the
objects and the attributes.

Let us note that there exists a ContextStr which is strict and non empty and there exists a Con-
textStr which is strict and non quasi-empty.

A FormalContext is a non quasi-empty ContextStr.

Let C be a 2-sorted. An object @ is an element of the objects 6f An Attribute ofC is an
element of the attributes .

Let C be a non quasi-empty 2-sorted. One can check that the attribu@&safon empty and
the objects o€ is non empty.

LetC be a non quasi-empty 2-sorted. Observe that there exists a subset of the olfjestdaif
is non empty and there exists a subset of the attribut€sxdiich is non empty.

LetC be a FormalContext, let be an object o€, and leta be an Attribute ofC. We say thab
is connected witla if and only if:

1 © Association of Mizar Users
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(Def. 5ff] (o, a) € the information ofC.

We introduceo is not connected with as an antonym o is connected witfa.

2. DERIVATION OPERATORS

LetC be a FormalContext. The functor ObjectDerivatiyields a function from $e obiects o€ into
2the attributes o€ g js defined by the condition (Def. 6).

(Def. 6) LetO be an element of® obiects o€ Then(ObjectDerivatioiT)(0) = {a;a ranges over
Attributes ofC: Ag.opject ofc (0 € O = 0is connected witta) }.

LetC be a FormalContext. The functor AttributeDerivat®pielding a function from g atributes ot
into 2he objects oL 5 defined by the condition (Def. 7).

(Def. 7) LetA be an element of ¥ atrbutes o€ - Then (AttributeDerivatiorC)(A) = {o;0 ranges
over objects o€: A, awibute ofc (2 € A = 01is connected witla) }.

The following propositions are true:

(1) LetCbe a FormalContext armbe an object of. Then(ObjectDerivatiorC)({o}) = {a;a
ranges over Attributes @: o is connected witla}.

(2) LetC be a FormalContext aralbe an Attribute o. Then(AttributeDerivatiorC)({a}) =
{0; 0 ranges over objects @ 0 is connected witka}.

(3) Forevery FormalConte and for all subset®;, O, of the objects o€ such thaD; C O,
holds(ObjectDerivatior)(0O,) C (ObjectDerivatiorC)(O1).

(4) Forevery FormalContegtand for all subsetd;, A, of the attributes of such tha#y; C Ay
holds(AttributeDerivatiorC)(Ay) C (AttributeDerivatiorC)(Ay).

(5) For every FormalContext and for every subseD of the objects ofC holds O C
(AttributeDerivatiorC) ((ObjectDerivatiorC) (O)).

(6) For every FormalContext and for every subseA of the attributes ofC holds A C
(ObjectDerivatior€) ((AttributeDerivatiorC)(A)).

(7) For every FormalContexC and for every subseO of the objects ofC holds
(ObjectDerivatior)(O) = (ObjectDerivatioi) ( (AttributeDerivatiorC) ((ObjectDerivatiorC) (O)) ).

(8) For every FormalContex€ and for every subsef of the attributes ofC holds
(AttributeDerivatiorC)(A) = (AttributeDerivatiorC) ((ObjectDerivatiorC) ((AttributeDerivatiorC) (A))).

(9) LetC be a FormalContextQ be a subset of the objects Gf andA be a subset of the
attributes ofC. ThenO C (AttributeDerivatiorC)(A) if and only if : O, A} C the information
of C.

(10) LetC be a FormalContexiD be a subset of the objects 6f andA be a subset of the
attributes ofC. ThenA C (ObjectDerivatior€)(O) if and only if O, A] C the information
of C.

(11) LetC be a FormalContextO be a subset of the objects &, and A be a sub-
set of the attributes oC. Then O C (AttributeDerivatiorC)(A) if and only if A C
(ObjectDerivatiorC)(O).

LetC be a FormalContext. The functg(C) yields a map from ge objects o jnig 2he attributes o
and is defined by:

(Def. 8) @(C) = ObjectDerivatiolC.

1 The definitions (Def. 3) and (Def. 4) have been removed.
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LetC be a FormalContext. The functor @yields a map from e atributes o€ jntg 226 objects o
and is defined as follows:

(Def. 9) psiC = AttributeDerivatiorC.

Let P, Rbe non empty relational structures anddete a connection betwedhandR. We say
thatC, is co-Galois if and only if the condition (Def. 10) is satisfied.

(Def. 10) There exists a mapfrom P into R and there exists a mapfrom R into P such that

(I) C= (fv g)a

(i) fis antitone,

(i) gis antitone, and

(iv) for all elementsp;, p2 of P and for all elements, r, of R holds p; < g(f(p1)) and

ri < f(g(ro)).

One can prove the following propositions:

(13E] Let P, R be non empty poset§; be a connection betwedhandR, f be a map fronP

into R, andg be a map fronR into P. Suppos&; = (f, g). ThenC; is co-Galois if and only
if for every elementp of P and for every elementof Rholdsp < g(r) iff r < f(p).

(14) LetP, R be non empty posets ari@} be a connection betwedhandR. SupposeC; is
co-Galois. Letf be a map fronP into Randg be a map fronRinto P. If C; = (f, g), then

f=1f-(g-f)andg=g-(f-0Q).
(15) For every FormalConteg holds(@(C), psiC) is co-Galois.

(16) For every FormalContex€ and for all subsetg);, O, of the objects ofC holds
(ObjectDerivatiorC) (01 U O,) = (ObjectDerivatiorC) (O1) N (ObjectDerivatiol€) (Oz).

(17) For every FormalContext and for all subset®\;, Ay of the attributes ofC holds
(AttributeDerivatiorC) (A1 UA2) = (AttributeDerivatiorC) (A;) N (AttributeDerivatiorC) (Ay).

(18) For every FormalConteg holds(ObjectDerivatiorC) (0) = the attributes o€.
(19) For every FormalConteg holds(AttributeDerivatiorC)(0) = the objects of.

3. FormMAL CONCEPTS

Let C be a 2-sorted. We consider ConceptStr dvers systems
( an extent, an interj

where the extent is a subset of the object€ aind the intent is a subset of the attribute€of
LetC be a 2-sorted and I€}, be a ConceptStr ov&. We say thaC, is empty if and only if:

(Def. 11) The extent of; is empty and the intent @ is empty.
We say thaC, is quasi-empty if and only if:
(Def. 12) The extent of; is empty or the intent of; is empty.

LetC be a non quasi-empty 2-sorted. One can check that there exists a ConceptStwbneh
is strict and non empty and there exists a ConceptStr@wehich is strict and quasi-empty.

LetC be an empty 2-sorted. One can check that every ConceptSt€Cagesmpty.

LetC be a quasi-empty 2-sorted. One can check that every ConceptSE€ /guasi-empty.

Let C be a FormalContext and I€ be a ConceptStr ov&. We say thaC, is concept-like if
and only if:

(Def. 13) (ObjectDerivatior)(the extent ofCy) = the intent ofC, and (AttributeDerivatiorC)(the
intent ofCy) = the extent ofC,.

2 The proposition (12) has been removed.
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LetC be a FormalContext. Observe that there exists a ConceptSt€Convhich is concept-like
and non empty.

Let C be a FormalContext. A FormalConcept®fs a concept-like non empty ConceptStr over
C.

LetC be a FormalContext. Observe that there exists a FormalConc€pwhbich is strict.

The following four propositions are true:

(20) LetC be a FormalContext and be a subset of the objects©f Then

(i)  ((AttributeDerivatiorC)((ObjectDerivatiorC)(O)), (ObjectDerivatiorC)(O)) is a For-
malConcept o€, and

(i) for every subsetO' of the objects ofC and for every subse®’ of the at-
tributes of C such that (O',A’) is a FormalConcept ofC and O € O holds
(AttributeDerivatiorC)((ObjectDerivatiorC)(0)) C O'.

(21) LetC be a FormalContext an® be a subset of the objects 6f Then there exists a
subsetA of the attributes ofC such that(O,A) is a FormalConcept of if and only if
(AttributeDerivatiorC) ((ObjectDerivatiorC) (0)) = O.

(22) LetC be a FormalContext anlbe a subset of the attributes@©f Then

()  ((AttributeDerivatiorC)(A), (ObjectDerivatiorC) ((AttributeDerivatiorC) (A))) is a For-
malConcept o€, and

(i) for every subsetO of the objects ofC and for every subse®’ of the at-
tributes of C such that (O',A’) is a FormalConcept ofC and A C A’ holds
(ObjectDerivatior) ((AttributeDerivatiorC) (A)) C A'.

(23) LetC be a FormalContext and be a subset of the attributes G6f Then there exists
a subsetO of the objects ofC such that(O,A) is a FormalConcept of if and only if
(ObjectDerivatiorC) ((AttributeDerivatiorC) (A)) = A.

Let C be a FormalContext and I€ be a ConceptStr ov&l. We say tha€C; is universal if and
only if:;

(Def. 14) The extent of, = the objects o€.

Let C be a FormalContext and I€ be a ConceptStr ovel. We say thaC; is co-universal if
and only if:

(Def. 15) The intent o€, = the attributes o€.

Let C be a FormalContext. Note that there exists a FormalConce@twhich is strict and
universal and there exists a FormalConcep @fhich is strict and co-universal.

LetC be a FormalContext. The functor Concepwith — all — ObjectsC yields a strict universal
FormalConcept o€ and is defined by the condition (Def. 16).

(Def. 16) There exists a subg@tof the objects o and there exists a subsebf the attributes o€
such that Concept with — all — ObjectC = (O, A) andO = (AttributeDerivatiorC)(0) and
A = (ObjectDerivatiorC) ((AttributeDerivatiorC) (0)).

Let C be a FormalContext. The functor Concepwith — all — AttributesC yielding a strict co-
universal FormalConcept & is defined by the condition (Def. 17).

(Def. 17) There exists a subséd of the objects ofC and there exists a subs&t of
the attributes ofC such that Conceptwith —all — AttributesC = (O,A) and O =
(AttributeDerivatiorC) ((ObjectDerivatior€)(0)) andA = (ObjectDerivatiorC)(0).

Next we state several propositions:

(24) LetC be a FormalContext. Then the extent of Coneeptith — all — ObjectC = the ob-
jects ofC and the intent of Conceptwith — all — AttributesC = the attributes o€.
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(25) LetC be a FormalContext arth be a FormalConcept &. Then
(i) if the extent ofC, = 0, thenC; is co-universal, and
(i) if the intent of C, = 0, thenC; is universal.

(26) LetC be a FormalContext ar@, be a strict FormalConcept €. Then
(i) if the extent ofC, = 0, thenC, = Concept- with — all — AttributesC, and
(i) if the intent of C; = 0, thenC, = Concept- with — all — Object<C.

(27) LetC be a FormalContext ant, be a quasi-empty ConceptStr ov@r Supposez; is a
FormalConcept of. ThenC; is universal and co-universal.

(28) Let C be a FormalContext an€; be a quasi-empty ConceptStr ovex If C;
is a strict FormalConcept o€, then C, = Concept- with —all — ObjectsC or C; =
Concept- with — all — AttributesC.

LetC be a FormalContext. A non empty set is called a Set of FormalConceft#:of
(Def. 18) For every seX such thai € it holds X is a FormalConcept oZ.

LetC be a FormalContext and I be a Set of FormalConcepts ©f We see that the element
of F, is a FormalConcept .

LetC be a FormalContext and 1€, C4 be FormalConcepts &. We say thaCs is SubConcept
of C4 if and only if:

(Def. 19) The extent of3 C the extent ofC,.

We introduceC, is SuperConcept dE3 as a synonym of3 is SubConcept of,.
Next we state three propositions:

(31 LetC be a FormalContext ancs, C4 be FormalConcepts &. ThenCs is SubConcept of
C, if and only if the intent ofC4 C the intent ofCs.

(33@] Let C be a FormalContext ants, C4 be FormalConcepts @&. ThenCs is SuperConcept
of C4 if and only if the intent ofC3 C the intent ofC,.

(34) LetC be a FormalContext an@; be a FormalConcept d. ThenC; is SubConcept
of Concept- with — all — ObjectsC and Concept with — all — AttributesC is SubConcept of
C.

4, CONCEPTLATTICES

Let C be a FormalContext. The functor-BcarrielC yields a non empty set and is defined by the
condition (Def. 20).

(Def. 20) B-—-carrielC = {(E,I);E ranges over subsets of the objects®f| ranges over sub-
sets of the attributes o€: (E,l) is non empty A (ObjectDerivatiol€)(E) =1 A
(AttributeDerivatiorC) (1) = E}.

LetC be a FormalContext. ThenBcarrieiC is a Set of FormalConcepts 6f
LetC be a FormalContext. Observe thatRarrietC is non empty.
We now state the proposition

(35) For every FormalConteg and for every se€; holdsC, € B — carrietC iff C; is a strict
FormalConcept of.

Let C be a FormalContext. The functor-BmeeC yields a binary operation on BcarrielC
and is defined by the condition (Def. 21).

3 The propositions (29) and (30) have been removed.
4 The proposition (32) has been removed.
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(Def. 21) Let C3, C4 be strict FormalConcepts of€. Then there exists a subs&@ of
the objects of C and there exists a subsét of the attributes ofC such that
(B—meeC)(C3,C4) = (O,A) and O = (the extent ofCz) N (the extent ofC4) and A =
(ObjectDerivatiorC) ((AttributeDerivatiorC)((the intent ofC3) U (the intent ofCy))).

LetC be a FormalContext. The functor-BjoinC yields a binary operation on B carrietC and
is defined by the condition (Def. 22).

(Def. 22) LetCs, C4 be strict FormalConcepts &f. Then there exists a subg@tof the objects oC
and there exists a subs&bf the attributes o€ such that B — joinC)(Cz, C4) = (O,A) and
O = (AttributeDerivatiorC) ((ObjectDerivatior) ((the extent oC3) U(the extent 0€,4))) and
A = (the intent ofC3) N (the intent 0fCy).

The following propositions are true:

(36) For every FormalContex€ and for all strict FormalConcept€;, C4 of C holds
(B—meeC)(Cs, C4) = (B—meeC)(Cy, C3).

(37) For every FormalContex€ and for all strict FormalConcept€s, C4 of C holds
(B—joinC)(Cgz, Cs) = (B —joinC)(Cy, Cg).

(38) For every FormalContext and for all strict FormalConceptSz, C4, Cs of C holds
(B —meel)(Cs, (B—meel)(Cy4, Cs)) = (B—meel)((B—meelC)(Cs, Cy), Cs).

(39) For every FormalContext and for all strict FormalConcepiS3, C4, Cs of C holds
(B—joinC)(Cs, (B—joinC)(C4, Cs)) = (B —joinC)((B —joinC)(Cs, Ca), Cs).

(40) For every FormalContex€ and for all strict FormalConcept€s, C; of C holds
(B—joinC)((B —meelC)(Cs, Cs), Cs) =C4.

(41) For every FormalContex€ and for all strict FormalConcept€s, C4 of C holds
(B—meel)(Cs, (B—joinC)(Cs, Cy)) =Cs.

(42) For every FormalContex€ and for every strict FormalConcepf, of C holds
(B —mee)(C,, Concept- with — all — ObjectC) = C,.

(43) For every FormalContex€C and for every strict FormalConcepf, of C holds
(B —joinC)(C,, Concept- with — all — ObjectsC) = Concept- with — all — Object<C.

(44) For every FormalContex€C and for every strict FormalConcepf, of C holds
(B —joinC)(C,, Concept- with — all — AttributesC) = C,.

(45) For every FormalContex€C and for every strict FormalConcepf, of C holds
(B —meel)(C,, Concept- with — all — AttributesC) = Concept- with — all — AttributesC.

Let C be a FormalContext. The functor ConceptLat@icgielding a strict non empty lattice
structure is defined as follows:

(Def. 23) ConceptlLattice = (B — carrieiC,B — joinC,B — meeC).
Next we state the proposition
(46) For every FormalContegt holds ConceptLatticg is a lattice.

LetC be a FormalContext. One can verify that ConceptLa@icestrict, non empty, and lattice-
like.

LetC be a FormalContext and I&tbe a non empty subset of ConceptLaticéVe see that the
element ofSis a FormalConcept df.

LetC be a FormalContext and I€» be an element of ConceptLattiCeThe functorC," yield-
ing a strict FormalConcept @ is defined as follows:

(Def. 24) C," =C,.
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We now state two propositions:

(47) For every FormalConteg and for all element€s, C4 of ConceptlLattic€ holdsCz C Cy
iff C3" is SubConcept of,".

(48) For every FormalContext holds ConceptLatticg is a complete lattice.

LetC be a FormalContext. One can verify that ConceptLa@icecomplete.
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