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Summary. The category is introduced as an ordered 5-tuple of the {@yw,domcod, -,id)
whereO (objects) andvl (morphisms) are arbitrary nonempty setemandcod mapM onto
O and assign to a morphism domain and codomdga partial binary map frorvl x M to M
(composition of morphismsjd applied to an object yields the identity morphism. We define
the basic notions of the category theory such as hom, monic, epi, invertible. We next de-
fine functors, the composition of functors, faithfulness and fullness of functors, isomorphism
between categories and the identity functor.

MML Identifier: CAT_1.

WWW: http://mizar.org/JFM/Voll/cat_1.html

The articles([6], [[4], [[7], [8], I[1], [3], [2], and[[b] provide the notation and terminology for this
paper.

In this papela, b, ¢, 0, mare sets.
The following proposition is true

(48 Let X, Y, Z be setsD be a non empty set, anfdbe a function fromX intoD. If Y C X
andf°Y C Z, thenf|Y is a function fromY into Z.

Let Abe a non empty set and let us consideThenA+— b is a function fromA into {b}.

Let us considea, b, c. The functor(a,b) — cyields a partial function from {a}, {b} ] to {c}
and is defined by:

(Def. 1) (a,b)—c={{a,b)}—c.

The following three propositions are true:

(7F dom((a,b) — c) = {{a, b)} and dont(a,b) — c) = [ {a}, {b} ].
®) ({ab)—rc)({ab))=c
(9) Forevery elementof {a} and for every elementof {b} holds((a,b) — ¢)({x,y)) =c.

We introduce category structures which are systems

( objects, morphisms, a dom-map, a cod-map, a composition, an id-map
where the objects and the morphisms constitute non empty sets, the dom-map and the cod-map
are functions from the morphisms into the objects, the composition is a partial functiort fhem

morphismsthe morphismg to the morphisms, and the id-map is a function from the objects into
the morphisms.

1 The propositions (1)—(3) have been removed.
2 The propositions (5) and (6) have been removed.
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In the sequeC denotes a category structure.

Let us conside€. An object ofC is an element of the objects 6 A morphism ofC is an
element of the morphisms @f.

We adopt the following rulesa, b, ¢, d denote objects o and f, g denote morphisms .

Let us conside€, f. The functor donf yields an object o€ and is defined as follows:

(Def. 2) domf = (the dom-map o€)(f).
The functor cod yielding an object o€ is defined by:
(Def. 3) codf = (the cod-map o€)(f).

Let us conside€, f, g. Let us assume thdg, f) € dom (the composition of). The functor
g- f yielding a morphism o€ is defined by:

(Def. 4) g- f = (the composition o€)({g, f)).
Let us conside€, a. The functor id yielding a morphism o€ is defined by:
(Def. 5) idy = (the id-map oC)(a).

Let us conside€, a, b. The functor horfa, b) yielding a subset of the morphisms®fs defined
as follows:

(Def. 6) honfa,b) = {f : domf =a A codf = b}.
The following propositions are true:
(18f] f € hom(a,b) iff dom f = aand codf = b.
(19) hon{domf,codf) # 0.

Let us conside€, a, b. Let us assume that ham b) # 0. A morphism ofC is called a morphism
fromatobif:

(Def. 7) Ite hom(a,b).
The following propositions are true:
(Zlﬁ] For every sef such thatf € hom(a,b) holds f is a morphism fronato b.
(22) Every morphisnt of C is a morphism from dor to codf.
(23) For every morphisnfi from ato b such that horta, b) # 0 holds domf = aand codf =b.

(24) Letf be a morphism frona to b andh be a morphism frone to d. If hom(a,b) # 0 and
hom(c,d) # 0andf = h, thena=candb =d.

(25) For every morphisni from a to b such that horfa,b) = {f} and for every morphismg
fromatobholdsf =g.

(26) For every morphisnfi from a to b such that horfa, b) # 0 and for every morphisrg from
atobholdsf = g holds honfa,b) = {f}.

(27) Letf be a morphism frona to b. Suppose hoifa, b) ~ hom(c,d) and honfa,b) = {f}.
Then there exists a morphidmfrom c to d such that hortc,d) = {h}.

LetC be a category structure. We say t@ds category-like if and only if the conditions (Def. 8)
are satisfied.

3 The propositions (10)—(17) have been removed.
4 The proposition (20) has been removed.
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(Def. 8)(i) For all elementd, g of the morphisms o€ holds{g, f) € dom(the composition df)
iff (the dom-map ofC)(g) = (the cod-map o€)(f),

(i) for all elementsf, g of the morphisms ofC such that (the dom-map &)(g) = (the
cod-map ofZ)(f) holds (the dom-map &) ((the composition of)({g, f})) = (the dom-map
of C)(f) and (the cod-map )((the composition o€)({g, f))) = (the cod-map o€)(g),

(i)  for all elementsf, g, h of the morphisms o€ such that (the dom-map @)(h) = (the
cod-map ofC)(g) and (the dom-map df)(g) = (the cod-map o€)(f) holds (the composi-
tion of C)((h, (the composition o€)((g, f)))) = (the composition o€)({(the composition
of C)({h, 9)), f)), and

(iv) for every elemenb of the objects o€ holds (the dom-map &) ((the id-map oC)(b)) =b
and (the cod-map o) ((the id-map ofC)(b)) = b and for every elemenit of the morphisms
of C such that (the cod-map &) ( f) = b holds (the composition &) ({((the id-map ofC)(b),
f)) = f and for every elemerg of the morphisms o€ such that (the dom-map @f)(g) =b
holds (the composition d)({g, (the id-map ofC)(b))) = g.

Let us note that there exists a category structure which is category-like.
A category is a category-like category structure.
Let us mention that there exists a category which is strict.
Next we state the proposition
(29E] LetC be a category structure. Suppose that
(i) for all morphismsf, g of C holds({g, f) € dom (the composition ot) iff domg = codf,

(i) for all morphismsf, g of C such that dorg = codf holds dontg- f) = domf and codg-
f) = codg,

(iii) ~ for all morphismsf, g, h of C such that dorh = codg and dong = codf holdsh-(g- f) =
(h-g)- f,and

(iv) for every objecth of C holds dontidp) = b and codidy) = b and for every morphisnf of
C such that cod = b holds id,- f = f and for every morphisng of C such that dorg="b
holdsg-idp = g.

ThenC is category-like.
Let us consideo, m. The functor’ (o, m) yielding a strict category is defined as follows:
(Def. 9) O(o,m) = ({o},{m},{m} — o,{m} — o, (m m) — m, {0} — m).

The following propositions are true:
(32f] ois an object of>(0,m).
(33) mis a morphism of>(o,m).
(34) For every objech of ©(0,m) holdsa = o.
(35) For every morphisnf of ©(o,m) holdsf = m.
(36) For all objects, b of ©>(0,m) and for every morphisnfi of ©>(0,m) holds f € hom(a, b).

(37) For all objectsa, b of ©(0,m) holds every morphism af(o,m) is a morphism froma to
b.

(38) For all objects, b of (0, m) holds honta, b) # 0.

(39) Leta, b, ¢, d be objects of > (o,m), f be a morphism frona to b, andg be a morphism
fromctod. Thenf =g.

5 The proposition (28) has been removed.
6 The propositions (30) and (31) have been removed.
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We follow the rules:B, C, D are categories, b, ¢, d are objects o€, andf, f1, fz, g, 01, g2
are morphisms ot.
We now state several propositions:

(40) domg = codf iff (g, f) € dom (the composition dT).
(41) If domg= codf, theng- f = (the composition o€)({g, f)).

(42) For all morphismd, g of C such that dorg = codf holds donfg- f) = domf and codg-
f) = codg.

(43) For all morphismg, g, h of C such that dorh = codg and domg = codf holdsh-(g- f) =
(h-g)-f.

(44) dom(idp) = b and codidp) =h.

(45) Ifida = idp, thena=h.

(46) For every morphisnfi of C such that cod = b holds id,- f = f.

(47) For every morphisrg of C such that dorg = b holdsg-id, = g.
Let us conside€, g. We say thay is monic if and only if:

(Def. 10) For allfy, f> such that donf; = domf; and codf; = domg and codf, = domg andg- f; =
g- f2 holds fl = f2.

Let us conside€, f. We say thaff is epi if and only if:

(Def. 11) For allgs, g2 such that dorg; = codf and dong, = codf and cody; = codg, andg; - f =
02- f holdsg; = gp.

Let us conside€, f. We say thaf is invertible if and only if:

(Def. 12) There existg such that dorg = codf and cody = domf and f - g = idcoqs andg- f =
iddomf-

In the sequef denotes a morphism fromto b, f’ denotes a morphism froimto a, g denotes
a morphism fronb to ¢, andh denotes a morphism fromto d.
One can prove the following two propositions:

(51)] 1fhom(a,b) # 0 and hontb,c) # 0, theng- f € hom(a,c).
(52) If hom(a,b) # 0 and hontb, c) # 0, then honta, c) # 0.

Let us conside€, a, b, c, f, g. Let us assume that hgm b) = 0 and hontb, c) # 0. The functor
g- f yields a morphism frona to c and is defined as follows:

(Def.13) g-f=g-f.
We now state three propositions:
(54 If hom(a, b) # 0 and hontb, c) # 0 and hontc,d) # 0, then(h-g)- f =h-(g- f).
(55) idy € hom(a,a).
(56) homa,a) #0.

Let us conside€, a. Then id, is a morphism froma to a.
We now state a number of propositions:

(57) Ifhom(a,b) #0, thenid,- f = f.

" The propositions (48)—(50) have been removed.
8 The proposition (53) has been removed.
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(58) Ifhom(b,c) £ 0, theng-id, = g.

(60) Suppose hofh,c) # 0. Theng is monic if and only if for everya and for all morphisms
f1, fo fromato b such that horfa, b) £ 0 andg- f1 = g- f2 holds f; = fo.

(61) If hom(b,c) # 0 and honfc,d) # 0 andg is monic anch is monic, therh- g is monic.
(62) If hom(b,c) # 0 and honfc,d) # 0 andh- g is monic, therg is monic.

(63) Leth be a morphism frona to b andg be a morphism fronb to a. If hom(a,b) # 0 and
hom(b,a) # 0 andh- g = idy, theng is monic.

(64) idyis monic.

(65) Suppose hofa,b) # 0. Thenf is epi if and only if for everyc and for all morphismg,
g2 from b to ¢ such that horth, c) £ 0 andg; - f = g2 f holdsg; = g».

(66) If hom(a,b) # 0 and hontb,c) # 0 andf is epi andy is epi, therg- f is epi.
(67) If hom(a,b) # 0 and hongb,c) # 0 andg- f is epi, therg is epi.

(68) Leth be a morphism frona to b andg be a morphism fronb to a. If hom(a,b) # 0 and
hom(b,a) # 0 andh- g = idy, thenh is epi.

(69) idyis epi.

(70) Suppose hofa,b) # 0. Then f is invertible if and only if the following conditions are
satisfied:

(i) hom(b,a) # 0, and
(i) there exists a morphismfrom b to a such thatf - g =idp andg- f = id,.

(71) If hom(a,b) # 0 and hontb,a) # 0, then for all morphismsy;, gz from b to a such that
f-g1 =idp andg, - f =id4 holdsg; = g».

Let us conside€, a, b, f. Let us assume that hdm b) # 0 andf is invertible. The functof —*
yields a morphism fronb to a and is defined by:

(Def. 14) f-fl=idpandf—t. f =id,.
We now state several propositions:
(73 If hom(a,b) # 0 and f is invertible, thenf is monic and epi.
(74) idyisinvertible.

(75) If hom(a,b) # 0 and hongb,c) # 0 and f is invertible andg is invertible, theng- f is
invertible.

7 If hom(a, andf is invertible, thenf —* is invertible.
(76) Ifhom(a,b) £0andfisi ible, thenf Lis i ibl

(77) Ifhom(a,b) # 0 and honib,c) # 0 and f is invertible andy is invertible, theng- f)~1 =
f1l.gL

Let us conside€, a. We say that is terminal if and only if;

(Def. 15) hontb,a) # 0 and there exists a morphisfmfrom b to a such that for every morphisig
frombtoaholdsf = g.

We say thatis initial if and only if:

9 The proposition (72) has been removed.
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(Def. 16) honta,b) # 0 and there exists a morphisffrom a to b such that for every morphisig
fromatobholdsf =g.

Let us consideb. We say that andb are isomorphic if and only if:
(Def. 17) honta,b) # 0 and there exist$ which is invertible.

The following propositions are true:

(81@ aandb are isomorphic iff horfa, b) # 0 and hontb, a) # 0 and there exist, f’ such that
f-f'=idyandf’-f =id,.

(82) aisinitial iff for every b there exists a morphismfrom ato b such that horfa,b) = { f}.
(83) Ifais initial, then for every morphisrh from a to a holds id; = h.

(84) If ais initial andbis initial, thena andb are isomorphic.

(85) If ais initial anda andb are isomorphic, theh is initial.

(86) bisterminaliff for everyathere exists a morphisinfromato b such that horte,b) = { f}.
(87) If ais terminal, then for every morphisinfrom a to a holds id, = h.

(88) If ais terminal andb is terminal, thera andb are isomorphic.

(89) Ifbisterminal anch andb are isomorphic, thea is terminal.

(90) If hom(a,b) # 0 anda is terminal, thenf is monic.

(91) aandaare isomorphic.

(92) If aandb are isomorphic, theh anda are isomorphic.

(93) Ifaandb are isomorphic antd andc are isomorphic, thea andc are isomorphic.

Let us consideC, D. A function from the morphisms o into the morphisms ob is said to
be a functor fronC to D if it satisfies the conditions (Def. 18).

(Def. 18)(i) For every element of the objects ofC there exists an elemedtof the objects oD
such that if(the id-map ofC)(c)) = (the id-map oD)(d),

(i)  for every elementf of the morphisms oC holds it (the id-map ofC)((the dom-map
of C)(f))) = (the id-map ofD)((the dom-map oD)(it(f))) and it (the id-map ofC)((the
cod-map ofC)(f))) = (the id-map oD)((the cod-map oD)(it(f))), and

(iiiy ~ for all elementsf, g of the morphisms of such that{g, f) € dom (the composition o)
holds it (the composition o€)({g, f})) = (the composition oD)((it(g), it(f))).

The following propositions are true:

(96E LetT be a function from the morphisms @finto the morphisms ob. Suppose that
(i) for every objectt of C there exists an objectof D such thafT (id;) = idg,
(i) for every morphismf of C holdsT (iddomf ) = idgomt (f) @ndT (idcodf ) = idcogr (), and
(iiiy  for all morphismsf, g of C such that dorg = codf holdsT(g- f) =T(g) - T(f).
ThenT is a functor fronC to D.

(97) For every functofr from C to D and for every object of C there exists an object of D
such thafT (id¢) = idg.

10 The propositions (78)—(80) have been removed.
11 The propositions (94) and (95) have been removed.
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(98) For every functofT from C to D and for every morphisnf of C holds T (idgomf) =
idgom(f) @ndT (idcods ) = idcogr (f)-

(99) LetT be a functor fromC to D and f, g be morphisms oCC. If domg = codf, then
domT(g) =codT(f)andT(g-f)=T(g) - T(f).

(100) LetT be a function from the morphisms Gfinto the morphisms ob andF be a function
from the objects o€ into the objects oD. Suppose that
(i) for every objectc of C holdsT (idc) = idr(c),
(i)  for every morphismf of C holdsF (domf) = domT (f) andF (codf) = codT (f), and
(iiiy  for all morphismsf, g of C such that dorg = codf holdsT(g- f) =T(g) - T(f).
ThenT is a functor fromC to D.

Let us conside€, D and letF be a function from the morphisms Gfinto the morphisms db.
Let us assume that for every elemerdf the objects ofC there exists an elemedtof the objects

of D such thaf ((the id-map ofC)(c)) = (the id-map oD)(d). The functor ObF yields a function
from the objects o€ into the objects oD and is defined by the condition (Def. 19).

(Def. 19) Letc be an element of the objects Gfandd be an element of the objects bf Suppose
F((the id-map ofC)(c)) = (the id-map oD)(d). Then(ObjF)(c) = d.

The following four propositions are true:

(102 Let T be a function from the morphisms @Gfinto the morphisms ob. Suppose that for
every object of C there exists an objectof D such thafT (id.) = idg4. Let ¢ be an object of
C andd be an object oD. If T(id¢) = idg, then(ObjT)(c) =d.

(103) LetT be a functor fronC to D, ¢ be an object o€, andd be an object ob. If T (id¢) = idg,
then(ObjT)(c) =d.

(104) For every functof from C to D and for every object of C holdsT (idc) = id(opjT)(c)-

(105) For every functoll from C to D and for every morphisnfi of C holds(ObjT)(domf) =
domT(f) and(ObjT)(codf) = codT (f).

LetC, D be categories, ek be a functor fronC to D, and letc be an object o€. The functor
T(c) yields an object oD and is defined by:

(Def. 20) T(c)= (ObjT)(c).
One can prove the following four propositions:

(107 Let T be a functor fronC to D, ¢ be an object o€, andd be an object oD. If T (id¢) =
idg, thenT (c) =d.

(108)  For every functol from C to D and for every object of C holdsT (idc) = idy (¢

(109) For every functom from C to D and for every morphisnf of C holds T(domf) =
domT (f) andT(codf) = codT (f).

(110) For every functof from B to C and for every functoSfrom C to D holdsS- T is a functor
from B to D.

Let us consideB, C, D, let T be a functor fronB to C, and letSbe a functor fronC to D. Then
S.T is a functor fromB to D.

The following three propositions are true:

(111) idhe morphisms ot iS & functor fromC to C.

12 The proposition (101) has been removed.
13 The proposition (106) has been removed.
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(112) LetT be a functor fronB to C, Sbe a functor fronC to D, andb be an object oB. Then
(Obj(S-T))(b) = (ObjS)((ObjT)(b)).

(113) For every functof from B to C and for every functofrom C to D and for every object
b of B holds(S- T)(b) = S(T(b)).

Let us conside€. The functor i¢ yields a functor fronC to C and is defined as follows:
(Def. 21) idt = idihe morphisms of-
The following four propositions are true:
(115@ For every morphisnf of C holds ict(f) = f.
(116) For every objeat of C holds(Obij(idc))(c) = c.
(117) Obfidc) = idthe objects ot
(118) For every objeat of C holds id:(c) = c.

Let C, D be categories and Iat be a functor fronC to D. We say thafl is isomorphic if and
only if;

(Def. 22) T is one-to-one and rip = the morphisms ob and rng ObJl = the objects oD.

We introduceT is an isomorphism as a synonym bfis isomorphic. We say that is full if and
only if the condition (Def. 23) is satisfied.

(Def. 23) Letc, ¢’ be objects ofS. Suppose hofT (c), T(c')) # 0. Let g be a morphism fronT (c)
to T(c). Then honfc,c’) # 0 and there exists a morphisfrfrom c to ¢’ such thag = T(f).

We say thafl is faithful if and only if:

(Def. 24) For all objects, ¢’ of C such that horft, c’) # 0 and for all morphismd, f, fromctoc
such thafl (f1) = T(f2) holds f; = fa.

One can prove the following propositions:
(1229 idc is an isomorphism.

(123) LetT be a functor fronC to D, ¢, ¢’ be objects o€, andf be a set. Iff € hom(c,c’), then
T(f) e hom(T(c), T(c)).

(124) LetT be a functor fronC to D andc, ¢’ be objects ofS. If hom(c,c’) # 0, then for every
morphismf from cto ¢’ holdsT(f) € hom(T(c),T(c)).

(125) LetT be a functor fronC to D andc, ¢’ be objects o€. Suppose hoifc,c’) # 0. Let f be
a morphism front to ¢’. ThenT(f) is a morphism fronT (c) to T(c).

(126) For every functoF fromC to D and for all objectg, ¢’ of C such that hortt,c’) # 0 holds
hom(T(c), T(¢')) #0.

(127) LetT be a functor fromB to C andSbe a functor fronC to D. If T is full and Sis full,
thenS- T is full.

(128) LetT be a functor fronB to C andS be a functor fronC to D. If T is faithful andSis
faithful, thenS- T is faithful.

(129) For every functoim from C to D and for all objectsc, ¢’ of C holds T°hom(c,c’) C
hom(T (c), T(c))).

14 The proposition (114) has been removed.
15 The propositions (119)—(121) have been removed.
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LetC, D be categories, I€f be a functor fronC to D, and letc, ¢’ be objects ofS. The functor
Te¢ yielding a function from horft, ¢') into hom(T(c), T(c')) is defined by:

(Def. 25) T =T[hom(c,c)).
One can prove the following propositions:

(131@ Let T be a functor fronC to D andc, ¢’ be objects o€. If hom(c,c’) # 0, then for every
morphismf fromcto ¢’ holdsTe ¢ (f) = T(f).

(132) Forevery functof fromCto D holdsT is full iff for all objectsc, ¢’ of C holds rndT¢ ) =
hom(T (c), T(c))).

(133) LetT be a functor fronC to D. ThenT is faithful if and only if for all objectsc, ¢’ of C
holdsT. ¢~ is one-to-one.
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