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Summary. In this article we defined the operation of a set and proved Bessel’s in-
equality. In the first section, we defined the sum of all results of an operation, in which the
results are given by taking each element of a set. In the second section, we defined Orthogonal
Family and Orthonormal Family. In the last section, we proved some properties of operation
of set and Bessel’s inequality.
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The articles [11], [16], [12], [7], [5], [6], [17], [14], [9], [13], [3], [8], [1], [10], [4], [2], and [15]
provide the notation and terminology for this paper.

1. SUM OF THE RESULT OFOPERATION WITH EACH ELEMENT OF A SET

For simplicity, we adopt the following convention:X denotes a real unitary space,x, y, y1, y2 denote
points of X, i, j denote natural numbers,D1 denotes a non empty set, andp1, p2 denote finite
sequences of elements ofD1.

One can prove the following proposition

(1) Supposep1 is one-to-one andp2 is one-to-one and rngp1 = rngp2. Then domp1 = domp2

and there exists a permutationP of domp1 such thatp2 = p1 ·P and domP = domp1 and
rngP = domp1.

Let D1 be a non empty set and letf be a binary operation onD1. Let us assume thatf is
commutative and associative and has a unity. LetY be a finite subset ofD1. The functor f ⊕Y
yields an element ofD1 and is defined as follows:

(Def. 1) There exists a finite sequencep of elements ofD1 such thatp is one-to-one and rngp = Y
and f ⊕Y = f � p.

Let us considerX and letY be a finite subset ofX. The functor SetopSum(Y,X) is defined by:

(Def. 2) SetopSum(Y,X) =
{

(the addition ofX)⊕Y, if Y 6= /0,
0X, otherwise.

Let us considerX, x, let p be a finite sequence, and let us consideri. The functor PO(i, p,x) is
defined as follows:

(Def. 3) PO(i, p,x) = (the scalar product ofX)(〈〈x, p(i)〉〉).

Let D2, D1 be non empty sets, letF be a function fromD1 into D2, and letp be a finite sequence
of elements ofD1. The functor FuncSeq(F, p) yields a finite sequence of elements ofD2 and is
defined by:
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(Def. 4) FuncSeq(F, p) = F · p.

Let D2, D1 be non empty sets and letf be a binary operation onD2. Let us assume thatf is
commutative and associative and has a unity. LetY be a finite subset ofD1 and letF be a function
from D1 into D2. Let us assume thatY ⊆ domF. The functor setopfunc(Y,D1,D2,F, f ) yielding an
element ofD2 is defined as follows:

(Def. 5) There exists a finite sequencep of elements ofD1 such thatp is one-to-one and rngp = Y
and setopfunc(Y,D1,D2,F, f ) = f �FuncSeq(F, p).

Let us considerX, x and letY be a finite subset ofX. The functor SetopPreProd(x,Y,X) yielding
a real number is defined by the condition (Def. 6).

(Def. 6) There exists a finite sequencep of elements of the carrier ofX such that

(i) p is one-to-one,

(ii) rng p = Y, and

(iii) there exists a finite sequenceq of elements ofR such that domq = domp and for everyi
such thati ∈ domq holdsq(i) = PO(i, p,x) and SetopPreProd(x,Y,X) = +R�q.

Let us considerX, x and letY be a finite subset ofX. The functor SetopProd(x,Y,X) yields a
real number and is defined as follows:

(Def. 7) SetopProd(x,Y,X) =
{

SetopPreProd(x,Y,X), if Y 6= /0,
0, otherwise.

2. ORTHOGONAL FAMILY AND ORTHONORMAL FAMILY

Let us considerX. A subset ofX is called an orthogonal family ofX if:

(Def. 8) For allx, y such thatx∈ it andy∈ it andx 6= y holds(x|y) = 0.

The following proposition is true

(2) /0 is an orthogonal family ofX.

Let us considerX. One can check that there exists an orthogonal family ofX which is finite.
Let us considerX. A subset ofX is called an orthonormal family ofX if:

(Def. 9) It is an orthogonal family ofX and for everyx such thatx∈ it holds(x|x) = 1.

One can prove the following proposition

(3) /0 is an orthonormal family ofX.

Let us considerX. Observe that there exists an orthonormal family ofX which is finite.
Next we state the proposition

(4) x = 0X iff for every y holds(x|y) = 0.

3. BESSEL’ S INEQUALITY

The following propositions are true:

(5) ‖x+y‖2 +‖x−y‖2 = 2· ‖x‖2 +2· ‖y‖2.

(6) If x, y are orthogonal, then‖x+y‖2 = ‖x‖2 +‖y‖2.

(7) Let p be a finite sequence of elements of the carrier ofX. Suppose lenp≥ 1 and for alli, j
such thati ∈ domp and j ∈ domp andi 6= j holds (the scalar product ofX)(〈〈p(i), p( j)〉〉) = 0.
Let q be a finite sequence of elements ofR. Suppose domp = domq and for everyi such
that i ∈ domq holdsq(i) = (the scalar product ofX)(〈〈p(i), p(i)〉〉). Then ((the addition of
X� p)|(the addition ofX� p)) = +R�q.
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(8) Let p be a finite sequence of elements of the carrier ofX. Suppose lenp≥ 1. Let q be a
finite sequence of elements ofR. Suppose domp = domq and for everyi such thati ∈ domq
holdsq(i) = (the scalar product ofX)(〈〈x, p(i)〉〉). Then(x|(the addition ofX� p)) = +R�q.

(9) Let Sbe a finite non empty subset ofX andF be a function from the carrier ofX into the
carrier ofX. SupposeS⊆ domF and for ally1, y2 such thaty1 ∈ S andy2 ∈ S andy1 6= y2

holds (the scalar product ofX)(〈〈F(y1), F(y2)〉〉) = 0. Let H be a function from the carrier of
X into R. SupposeS⊆ domH and for everyy such thaty∈SholdsH(y) = (the scalar product
of X)(〈〈F(y), F(y)〉〉). Let p be a finite sequence of elements of the carrier ofX. Supposep is
one-to-one and rngp= S. Then (the scalar product ofX)(〈〈the addition ofX�FuncSeq(F, p),
the addition ofX�FuncSeq(F, p)〉〉) = +R�FuncSeq(H, p).

(10) Let S be a finite non empty subset ofX andF be a function from the carrier ofX into
the carrier ofX. SupposeS⊆ domF. Let H be a function from the carrier ofX into R.
SupposeS⊆ domH and for everyy such thaty ∈ S holds H(y) = (the scalar product of
X)(〈〈x, F(y)〉〉). Let p be a finite sequence of elements of the carrier ofX. Supposep is one-to-
one and rngp = S. Then (the scalar product ofX)(〈〈x, the addition ofX�FuncSeq(F, p)〉〉) =
+R�FuncSeq(H, p).

(11) Let givenX. Suppose the addition ofX is commutative and associative and the addition
of X has a unity. Let givenx andS be a finite orthonormal family ofX. SupposeS is non
empty. LetH be a function from the carrier ofX into R. SupposeS⊆ domH and for every
y such thaty ∈ S holdsH(y) = (x|y)2. Let F be a function from the carrier ofX into the
carrier ofX. SupposeS⊆ domF and for everyy such thaty∈ SholdsF(y) = (x|y) ·y. Then
(x|setopfunc(S, the carrier ofX, the carrier ofX, F, the addition ofX)) = setopfunc(S, the
carrier ofX, R,H,+R).

(12) Let givenX. Suppose the addition ofX is commutative and associative and the addition
of X has a unity. Let givenx andS be a finite orthonormal family ofX. SupposeS is non
empty. LetF be a function from the carrier ofX into the carrier ofX. SupposeS⊆ domF
and for everyy such thaty ∈ S holdsF(y) = (x|y) · y. Let H be a function from the carrier
of X into R. SupposeS⊆ domH and for everyy such thaty∈ SholdsH(y) = (x|y)2. Then
(setopfunc(S, the carrier ofX, the carrier ofX, F, the addition ofX)|setopfunc(S, the carrier
of X, the carrier ofX, F, the addition ofX)) = setopfunc(S, the carrier ofX, R,H,+R).

(13) Let givenX. Suppose the addition ofX is commutative and associative and the addition of
X has a unity. Let givenx andSbe a finite orthonormal family ofX. SupposeS is non empty.
Let H be a function from the carrier ofX into R. SupposeS⊆ domH and for everyy such
thaty∈ SholdsH(y) = (x|y)2. Then setopfunc(S, the carrier ofX, R,H,+R)≤ ‖x‖2.

(14) LetD2, D1 be non empty sets andf be a binary operation onD2. Supposef is commutative
and associative and has a unity. LetY1, Y2 be finite subsets ofD1. SupposeY1 missesY2. Let
F be a function fromD1 into D2. SupposeY1 ⊆ domF andY2 ⊆ domF. Let Z be a finite
subset ofD1. If Z = Y1∪Y2, then setopfunc(Z,D1,D2,F, f ) = f (setopfunc(Y1,D1,D2,F, f ),
setopfunc(Y2,D1,D2,F, f )).
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