
JOURNAL OF FORMALIZED MATHEMATICS

Volume5, Released 1993, Published 2003

Inst. of Computer Science, Univ. of Białystok

Some Remarks on the Simple Concrete Model of
Computer

Andrzej Trybulec
Warsaw University

Białystok

Yatsuka Nakamura
Shinshu University

Nagano

Summary. We prove some results onSCM needed for the proof of the correctness of
Euclid’s algorithm. We introduce the following concepts:

- starting finite partial state (Start-At(l)), then assigns to the instruction counter an in-
struction location (and consists only of this assignment),

- programmed finite partial state, that consists of the instructions (to be more precise, a
finite partial state with the domain consisting of instruction locations).

We define for a total stateswhat it means thatsstarts atl (the value of the instruction counter
in the states is l) ands halts atl (the halt instruction is assigned tol in the states). Similar
notions are defined for finite partial states.

MML Identifier: AMI_3.

WWW: http://mizar.org/JFM/Vol5/ami_3.html

The articles [15], [14], [19], [3], [2], [17], [6], [7], [18], [1], [16], [8], [4], [13], [20], [9], [10], [5],
[11], and [12] provide the notation and terminology for this paper.

1. A SMALL CONCRETE MACHINE

In this paperi, j, k are natural numbers.
The strict AMISCM over{Z} is defined as follows:

(Def. 1) SCM = 〈N,0, Instr-LocSCM,Z9, InstrSCM,OKSCM,ExecSCM〉.

One can verify thatSCM is non empty and non void.
Next we state two propositions:

(1) SCM is data-oriented.

(2) SCM is definite.

One can check thatSCM is IC-Ins-separated, data-oriented, and definite.
An object ofSCM is called a data-location if:

(Def. 2) It∈ Data-LocSCM.

Let s be a state ofSCM and letd be a data-location. Thens(d) is an integer.
We use the following convention:a, b, c denote data-locations,l1 denotes an instruction-location

of SCM, andI denotes an instruction ofSCM.
Let us considera, b. The functora:=b yielding an instruction ofSCM is defined as follows:

1 c© Association of Mizar Users

http://mizar.org/JFM/Vol5/ami_3.html

SOME REMARKS ON THE SIMPLE CONCRETE MODEL OF. . . 2

(Def. 3) a:=b = 〈〈1, 〈a,b〉〉〉.

The functor AddTo(a,b) yields an instruction ofSCM and is defined by:

(Def. 4) AddTo(a,b) = 〈〈2, 〈a,b〉〉〉.

The functor SubFrom(a,b) yielding an instruction ofSCM is defined as follows:

(Def. 5) SubFrom(a,b) = 〈〈3, 〈a,b〉〉〉.

The functor MultBy(a,b) yielding an instruction ofSCM is defined by:

(Def. 6) MultBy(a,b) = 〈〈4, 〈a,b〉〉〉.

The functor Divide(a,b) yielding an instruction ofSCM is defined as follows:

(Def. 7) Divide(a,b) = 〈〈5, 〈a,b〉〉〉.

Let us considerl1. The functor gotol1 yields an instruction ofSCM and is defined by:

(Def. 8) gotol1 = 〈〈6, 〈l1〉〉〉.

Let us considera. The functorif a= 0 goto l1 yielding an instruction ofSCM is defined as follows:

(Def. 9) if a = 0 goto l1 = 〈〈7, 〈l1,a〉〉〉.

The functorif a > 0 goto l1 yields an instruction ofSCM and is defined as follows:

(Def. 10) if a > 0 goto l1 = 〈〈8, 〈l1,a〉〉〉.

In the sequels is a state ofSCM.
The following propositions are true:

(4)1 ICSCM = 0.

(5) For everySCM-stateSsuch thatS= s holdsIC s = ICS.

Let l1 be an instruction-location ofSCM. The functor Next(l1) yielding an instruction-location
of SCM is defined as follows:

(Def. 11) There exists an elementm1 of Instr-LocSCM such thatm1 = l1 and Next(l1) = Next(m1).

The following two propositions are true:

(6) For every instruction-locationl1 of SCM and for every elementm1 of Instr-LocSCM such
thatm1 = l1 holds Next(m1) = Next(l1).

(7) For every elementi of InstrSCM such thati = I and for everySCM-stateSsuch thatS= s
holds Exec(I ,s) = Exec-ResSCM(i,S).

2. USERS GUIDE

We now state several propositions:

(8) (Exec(a:=b,s))(ICSCM) = Next(IC s) and(Exec(a:=b,s))(a) = s(b) and for everyc such
thatc 6= a holds(Exec(a:=b,s))(c) = s(c).

(9) (Exec(AddTo(a,b),s))(ICSCM) = Next(IC s) and(Exec(AddTo(a,b),s))(a) = s(a)+s(b)
and for everyc such thatc 6= a holds(Exec(AddTo(a,b),s))(c) = s(c).

(10) (Exec(SubFrom(a,b),s))(ICSCM) = Next(IC s) and(Exec(SubFrom(a,b),s))(a) = s(a)−
s(b) and for everyc such thatc 6= a holds(Exec(SubFrom(a,b),s))(c) = s(c).

1 The proposition (3) has been removed.

SOME REMARKS ON THE SIMPLE CONCRETE MODEL OF. . . 3

(11) (Exec(MultBy(a,b),s))(ICSCM) = Next(ICs) and(Exec(MultBy(a,b),s))(a) = s(a) ·s(b)
and for everyc such thatc 6= a holds(Exec(MultBy(a,b),s))(c) = s(c).

(12)(i) (Exec(Divide(a,b),s))(ICSCM) = Next(ICs),

(ii) if a 6= b, then(Exec(Divide(a,b),s))(a) = s(a)÷s(b),

(iii) (Exec(Divide(a,b),s))(b) = s(a)mods(b), and

(iv) for everyc such thatc 6= a andc 6= b holds(Exec(Divide(a,b),s))(c) = s(c).

(13) (Exec(goto l1,s))(ICSCM) = l1 and(Exec(goto l1,s))(c) = s(c).

(14) If s(a) = 0, then(Exec(if a= 0 goto l1,s))(ICSCM) = l1 and ifs(a) 6= 0, then(Exec(if a=
0 goto l1,s))(ICSCM) = Next(ICs) and(Exec(if a = 0 goto l1,s))(c) = s(c).

(15) If s(a) > 0, then(Exec(if a> 0 goto l1,s))(ICSCM) = l1 and ifs(a)≤ 0, then(Exec(if a>
0 goto l1,s))(ICSCM) = Next(ICs) and(Exec(if a > 0 goto l1,s))(c) = s(c).

One can verify thatSCM is halting.

3. PRELIMINARIES

One can prove the following proposition

(18)2 For all integersm, j holdsm· j ≡ 0(modm).

The schemeINDI deals with natural numbersA , B and a unary predicateP , and states that:
P [B]

provided the parameters satisfy the following conditions:
• P [0],
• A > 0, and
• For all i, j such thatP [A · i] and j 6= 0 and j ≤ A holdsP [A · i + j].

We now state a number of propositions:

(19) Let X, Y be non empty sets andf , g be partial functions fromX to Y. Suppose that for
every elementx of X and for every elementy of Y holds〈〈x, y〉〉 ∈ f iff 〈〈x, y〉〉 ∈ g. Then f = g.

(20) For all functionsf , g and for all setsA, B such that f �A = g�A and f �B = g�B holds
f �(A∪B) = g�(A∪B).

(21) For every setX and for all functionsf , g such that domg⊆ X andg⊆ f holdsg⊆ f �X.

(22) For every functionf and for every setx such thatx∈ dom f holds f �{x}= {〈〈x, f (x)〉〉}.

(23) For every functionf and for every setX such thatX misses domf holds f �X = /0.

(24) For all functionsf , g and for every setx such that domf = domg and f (x) = g(x) holds
f �{x}= g�{x}.

(25) For all functionsf , g and for all setsx, y such that domf = domg and f (x) = g(x) and
f (y) = g(y) holds f �{x,y}= g�{x,y}.

(26) Let f , g be functions andx, y, zbe sets. If domf = domg and f (x) = g(x) and f (y) = g(y)
and f (z) = g(z), then f �{x,y,z}= g�{x,y,z}.

(27) For all setsa, b and for every functionf such thata∈ dom f and f (a) = b holdsa7−→. b⊆ f .

(29)3 For all setsa, b, c, d and for every functionf such thata ∈ dom f andc ∈ dom f and
f (a) = b and f (c) = d holds[a 7−→ b,c 7−→ d]⊆ f .

2 The propositions (16) and (17) have been removed.
3 The proposition (28) has been removed.

SOME REMARKS ON THE SIMPLE CONCRETE MODEL OF. . . 4

4. SOME REMARKS ON AMI-STRUCT

In the sequelN denotes a set.
Next we state the proposition

(31)4 For every AMISoverN and for every finite partial statep of Sholdsp∈ FinPartSt(S).

Let N be a set and letSbe an AMI overN. Observe that FinPartSt(S) is non empty.
We now state two propositions:

(32) For every AMISoverN holds every element of FinPartSt(S) is a finite partial state ofS.

(33) LetSbe an AMI overN andF1, F2 be partial functions from FinPartSt(S) to FinPartSt(S).
Suppose that for all finite partial statesp, q of S holds 〈〈p, q〉〉 ∈ F1 iff 〈〈p, q〉〉 ∈ F2. Then
F1 = F2.

The schemeEqFPSFuncdeals with a non empty setA with non empty elements, an AMIB
over A , partial functionsC , D from FinPartSt(B) to FinPartSt(B), and a binary predicateP , and
states that:

C = D
provided the parameters meet the following conditions:

• For all finite partial statesp, q of B holds〈〈p, q〉〉 ∈ C iff P [p,q], and
• For all finite partial statesp, q of B holds〈〈p, q〉〉 ∈D iff P [p,q].

Let N be a set with non empty elements, letS be an IC-Ins-separated definite non empty non
void AMI over N, and letl be an instruction-location ofS. The functor Start-At(l) yielding a finite
partial state ofS is defined by:

(Def. 12) Start-At(l) = ICS7−→. l .

In the sequelN denotes a set with non empty elements.
One can prove the following proposition

(34) Let S be an IC-Ins-separated definite non empty non void AMI overN and l be an
instruction-location ofS. Then domStart-At(l) = {ICS}.

Let N be a set, letSbe an AMI overN, and letI1 be a finite partial state ofS. We say thatI1 is
programmed if and only if:

(Def. 13) domI1 ⊆ the instruction locations ofS.

Let N be a set and letSbe an AMI overN. Note that there exists a finite partial state ofSwhich
is programmed.

We now state four propositions:

(35) LetN be a set,S be an AMI overN, andp1, p2 be programmed finite partial states ofS.
Thenp1+·p2 is programmed.

(36) For every non void AMISoverN and for every states of Sholds doms= the carrier ofS.

(37) For every AMISoverN and for every finite partial statep of Sholds domp⊆ the carrier
of S.

(38) LetSbe a steady-programmed IC-Ins-separated definite non empty non void AMI overN,
p be a programmed finite partial state ofS, ands be a state ofS. If p⊆ s, then for everyk
holdsp⊆ (Computation(s))(k).

Let us considerN, let Sbe an IC-Ins-separated non empty non void AMI overN, let sbe a state
of S, and letl be an instruction-location ofS. We say thats starts atl if and only if:

4 The proposition (30) has been removed.

SOME REMARKS ON THE SIMPLE CONCRETE MODEL OF. . . 5

(Def. 14) ICs = l .

Let us considerN, let Sbe an IC-Ins-separated halting non empty non void AMI overN, let sbe
a state ofS, and letl be an instruction-location ofS. We say thats halts atl if and only if:

(Def. 15) s(l) = haltS.

We now state the proposition

(39) For every non void AMISoverN and for every finite partial statep of Sthere exists a state
s of Ssuch thatp⊆ s.

Let us considerN, let S be a definite IC-Ins-separated non empty non void AMI overN, and
let p be a finite partial state ofS. Let us assume thatICS ∈ domp. The functorIC p yields an
instruction-location ofSand is defined as follows:

(Def. 16) IC p = p(ICS).

Let us considerN, let S be a definite IC-Ins-separated non empty non void AMI overN, let p
be a finite partial state ofS, and letl be an instruction-location ofS. We say thatp starts atl if and
only if:

(Def. 17) ICS∈ domp andIC p = l .

Let us considerN, let Sbe a definite IC-Ins-separated halting non empty non void AMI overN,
let p be a finite partial state ofS, and letl be an instruction-location ofS. We say thatp halts atl if
and only if:

(Def. 18) l ∈ domp andp(l) = haltS.

We now state a number of propositions:

(40) LetSbe an IC-Ins-separated definite steady-programmed halting non empty non void AMI
overN ands be a state ofS. Thens is halting if and only if there existsk such thats halts at
IC (Computation(s))(k).

(41) LetSbe an IC-Ins-separated definite steady-programmed halting non empty non void AMI
overN, s be a state ofS, p be a finite partial state ofS, andl be an instruction-location ofS.
If p⊆ s andp halts atl , thens halts atl .

(42) LetSbe a halting steady-programmed IC-Ins-separated definite non empty non void AMI
overN, sbe a state ofS, and givenk. If s is halting, then Result(s) = (Computation(s))(k) iff
s halts atIC (Computation(s))(k).

(43) LetSbe a steady-programmed IC-Ins-separated definite non empty non void AMI overN,
s be a state ofS, p be a programmed finite partial state ofS, and givenk. Thenp⊆ s if and
only if p⊆ (Computation(s))(k).

(44) LetSbe a halting steady-programmed IC-Ins-separated definite non empty non void AMI
over N, s be a state ofS, and givenk. If s halts atIC (Computation(s))(k), then Result(s) =
(Computation(s))(k).

(45) Supposei ≤ j. Let Sbe a halting steady-programmed IC-Ins-separated definite non empty
non void AMI overN ands be a state ofS. If s halts atIC (Computation(s))(i), thens halts at
IC (Computation(s))(j).

(46) Supposei ≤ j. Let S be a halting steady-programmed IC-Ins-separated definite non
empty non void AMI overN and s be a state ofS. If s halts atIC (Computation(s))(i), then
(Computation(s))(j) = (Computation(s))(i).

(47) LetSbe a steady-programmed IC-Ins-separated halting definite non empty non void AMI
overN ands be a state ofS. If there existsk such thats halts atIC (Computation(s))(k), then for
everyi holds Result(s) = Result((Computation(s))(i)).

SOME REMARKS ON THE SIMPLE CONCRETE MODEL OF. . . 6

(48) LetSbe a steady-programmed IC-Ins-separated definite halting non empty non void AMI
overN, sbe a state ofS, l be an instruction-location ofS, and givenk. Thenshalts atl if and
only if (Computation(s))(k) halts atl .

(49) LetSbe a definite IC-Ins-separated non empty non void AMI overN, p be a finite partial
state ofS, andl be an instruction-location ofS. Supposep starts atl . Let s be a state ofS. If
p⊆ s, thens starts atl .

(50) Let S be an IC-Ins-separated definite non empty non void AMI overN and l be an
instruction-location ofS. Then Start-At(l)(ICS) = l .

Let us considerN, let S be a definite IC-Ins-separated non empty non void AMI overN, let l
be an instruction-location ofS, and letI be an element of the instructions ofS. Then l 7−→. I is a
programmed finite partial state ofS.

5. INSTRUCTIONLOCATIONS AND DATA LOCATIONS

We now state the proposition

(51) SCM is realistic.

Let us observe thatSCM is steady-programmed and realistic.
Let k be a natural number. The functordk yields a data-location and is defined by:

(Def. 19) dk = 2·k+1.

The functorik yields an instruction-location ofSCM and is defined by:

(Def. 20) ik = 2·k+2.

In the sequeli, j, k are natural numbers.
We now state four propositions:

(52) If i 6= j, thendi 6= d j .

(53) If i 6= j, theni i 6= i j .

(54) Next(ik) = ik+1.

(55) For every data-locationl holds ObjectKind(l) = Z.

Let l2 be a data-location and leta be an integer. Thenl2 7−→. a is a finite partial state ofSCM.
Let l2, l3 be data-locations and leta, b be integers. Then[l2 7−→ a, l3 7−→ b] is a finite partial

state ofSCM.
One can prove the following propositions:

(56) di 6= i j .

(57) ICSCM 6= di andICSCM 6= i i .

6. HALT INSTRUCTION

One can prove the following propositions:

(58) For every instructionI of SCM such that there existss such that(Exec(I ,s))(ICSCM) =
Next(ICs) holdsI is non halting.

(59) For every instructionI of SCM such thatI = 〈〈0, /0〉〉 holdsI is halting.

(60) a:=b is non halting.

(61) AddTo(a,b) is non halting.

SOME REMARKS ON THE SIMPLE CONCRETE MODEL OF. . . 7

(62) SubFrom(a,b) is non halting.

(63) MultBy(a,b) is non halting.

(64) Divide(a,b) is non halting.

(65) gotol1 is non halting.

(66) if a = 0 goto l1 is non halting.

(67) if a > 0 goto l1 is non halting.

(68) 〈〈0, /0〉〉 is an instruction ofSCM.

(69) LetI be a set. ThenI is an instruction ofSCM if and only if one of the following conditions
is satisfied:

I = 〈〈0, /0〉〉 or there exista, b such thatI = a:=b or there exista, b such thatI = AddTo(a,b)
or there exista, b such thatI = SubFrom(a,b) or there exista, b such thatI = MultBy(a,b)
or there exista, b such thatI = Divide(a,b) or there existsl1 such thatI = goto l1 or there
exista, l1 such thatI = if a = 0 goto l1 or there exista, l1 such thatI = if a > 0 goto l1.

(70) For every instructionI of SCM such thatI is halting holdsI = haltSCM.

(71) haltSCM = 〈〈0, /0〉〉.

REFERENCES

[1] Grzegorz Bancerek. The fundamental properties of natural numbers.Journal of Formalized Mathematics, 1, 1989. http://mizar.
org/JFM/Vol1/nat_1.html.

[2] Grzegorz Bancerek. The ordinal numbers.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/ordinal1.
html.

[3] Grzegorz Bancerek. Sequences of ordinal numbers.Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/
ordinal2.html.

[4] Grzegorz Bancerek. K̈onig’s theorem.Journal of Formalized Mathematics, 2, 1990.http://mizar.org/JFM/Vol2/card_3.html.

[5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences.Journal of Formalized Mathematics,
1, 1989.http://mizar.org/JFM/Vol1/finseq_1.html.

[6] Czesław Bylínski. Functions and their basic properties.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/
funct_1.html.

[7] Czesław Bylínski. Functions from a set to a set.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/funct_
2.html.

[8] Czesław Bylínski. A classical first order language.Journal of Formalized Mathematics, 2, 1990.http://mizar.org/JFM/Vol2/cqc_
lang.html.

[9] Czesław Bylínski. The modification of a function by a function and the iteration of the composition of a function.Journal of Formalized
Mathematics, 2, 1990.http://mizar.org/JFM/Vol2/funct_4.html.

[10] Agata Darmochwał. Finite sets.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/finset_1.html.

[11] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU.Journal of Formalized Mathematics, 4, 1992. http:
//mizar.org/JFM/Vol4/ami_1.html.

[12] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs.Journal of Formalized Mathematics, 4, 1992.
http://mizar.org/JFM/Vol4/ami_2.html.

[13] Dariusz Surowik. Cyclic groups and some of their properties — part I.Journal of Formalized Mathematics, 3, 1991.http://mizar.
org/JFM/Vol3/gr_cy_1.html.

[14] Andrzej Trybulec. Enumerated sets.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/enumset1.html.

[15] Andrzej Trybulec. Tarski Grothendieck set theory.Journal of Formalized Mathematics, Axiomatics, 1989.http://mizar.org/JFM/
Axiomatics/tarski.html.

[16] Andrzej Trybulec. Tuples, projections and Cartesian products.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/
Vol1/mcart_1.html.

[17] Andrzej Trybulec. Subsets of real numbers.Journal of Formalized Mathematics, Addenda, 2003.http://mizar.org/JFM/Addenda/
numbers.html.

http://mizar.org/JFM/Vol1/nat_1.html
http://mizar.org/JFM/Vol1/nat_1.html
http://mizar.org/JFM/Vol1/ordinal1.html
http://mizar.org/JFM/Vol1/ordinal1.html
http://mizar.org/JFM/Vol1/ordinal2.html
http://mizar.org/JFM/Vol1/ordinal2.html
http://mizar.org/JFM/Vol2/card_3.html
http://mizar.org/JFM/Vol1/finseq_1.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/funct_2.html
http://mizar.org/JFM/Vol1/funct_2.html
http://mizar.org/JFM/Vol2/cqc_lang.html
http://mizar.org/JFM/Vol2/cqc_lang.html
http://mizar.org/JFM/Vol2/funct_4.html
http://mizar.org/JFM/Vol1/finset_1.html
http://mizar.org/JFM/Vol4/ami_1.html
http://mizar.org/JFM/Vol4/ami_1.html
http://mizar.org/JFM/Vol4/ami_2.html
http://mizar.org/JFM/Vol3/gr_cy_1.html
http://mizar.org/JFM/Vol3/gr_cy_1.html
http://mizar.org/JFM/Vol1/enumset1.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Vol1/mcart_1.html
http://mizar.org/JFM/Vol1/mcart_1.html
http://mizar.org/JFM/Addenda/numbers.html
http://mizar.org/JFM/Addenda/numbers.html

SOME REMARKS ON THE SIMPLE CONCRETE MODEL OF. . . 8

[18] Michał J. Trybulec. Integers.Journal of Formalized Mathematics, 2, 1990.http://mizar.org/JFM/Vol2/int_1.html.

[19] Zinaida Trybulec. Properties of subsets.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/subset_1.html.

[20] Edmund Woronowicz. Relations and their basic properties.Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/
Vol1/relat_1.html.

Received October 8, 1993

Published January 2, 2004

http://mizar.org/JFM/Vol2/int_1.html
http://mizar.org/JFM/Vol1/subset_1.html
http://mizar.org/JFM/Vol1/relat_1.html
http://mizar.org/JFM/Vol1/relat_1.html

	some remarks on the simple concrete model of … By andrzej trybulec and yatsuka nakamura

