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Summary. We prove some results onSCM needed for the proof of the correctness of
Euclid’s algorithm. We introduce the following concepts:

- starting finite partial state (Start-At(l)), then assigns to the instruction counter an in-
struction location (and consists only of this assignment),

- programmed finite partial state, that consists of the instructions (to be more precise, a
finite partial state with the domain consisting of instruction locations).

We define for a total stateswhat it means thatsstarts atl (the value of the instruction counter
in the states is l ) ands halts atl (the halt instruction is assigned tol in the states). Similar
notions are defined for finite partial states.

MML Identifier: AMI_3.

WWW: http://mizar.org/JFM/Vol5/ami_3.html

The articles [15], [14], [19], [3], [2], [17], [6], [7], [18], [1], [16], [8], [4], [13], [20], [9], [10], [5],
[11], and [12] provide the notation and terminology for this paper.

1. A SMALL CONCRETE MACHINE

In this paperi, j, k are natural numbers.
The strict AMISCM over{Z} is defined as follows:

(Def. 1) SCM = 〈N,0, Instr-LocSCM,Z9, InstrSCM,OKSCM,ExecSCM〉.

One can verify thatSCM is non empty and non void.
Next we state two propositions:

(1) SCM is data-oriented.

(2) SCM is definite.

One can check thatSCM is IC-Ins-separated, data-oriented, and definite.
An object ofSCM is called a data-location if:

(Def. 2) It∈ Data-LocSCM.

Let s be a state ofSCM and letd be a data-location. Thens(d) is an integer.
We use the following convention:a, b, c denote data-locations,l1 denotes an instruction-location

of SCM, andI denotes an instruction ofSCM.
Let us considera, b. The functora:=b yielding an instruction ofSCM is defined as follows:
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(Def. 3) a:=b = 〈〈1, 〈a,b〉〉〉.

The functor AddTo(a,b) yields an instruction ofSCM and is defined by:

(Def. 4) AddTo(a,b) = 〈〈2, 〈a,b〉〉〉.

The functor SubFrom(a,b) yielding an instruction ofSCM is defined as follows:

(Def. 5) SubFrom(a,b) = 〈〈3, 〈a,b〉〉〉.

The functor MultBy(a,b) yielding an instruction ofSCM is defined by:

(Def. 6) MultBy(a,b) = 〈〈4, 〈a,b〉〉〉.

The functor Divide(a,b) yielding an instruction ofSCM is defined as follows:

(Def. 7) Divide(a,b) = 〈〈5, 〈a,b〉〉〉.

Let us considerl1. The functor gotol1 yields an instruction ofSCM and is defined by:

(Def. 8) gotol1 = 〈〈6, 〈l1〉〉〉.

Let us considera. The functorif a= 0 goto l1 yielding an instruction ofSCM is defined as follows:

(Def. 9) if a = 0 goto l1 = 〈〈7, 〈l1,a〉〉〉.

The functorif a > 0 goto l1 yields an instruction ofSCM and is defined as follows:

(Def. 10) if a > 0 goto l1 = 〈〈8, 〈l1,a〉〉〉.

In the sequels is a state ofSCM.
The following propositions are true:

(4)1 ICSCM = 0.

(5) For everySCM-stateSsuch thatS= s holdsIC s = ICS.

Let l1 be an instruction-location ofSCM. The functor Next(l1) yielding an instruction-location
of SCM is defined as follows:

(Def. 11) There exists an elementm1 of Instr-LocSCM such thatm1 = l1 and Next(l1) = Next(m1).

The following two propositions are true:

(6) For every instruction-locationl1 of SCM and for every elementm1 of Instr-LocSCM such
thatm1 = l1 holds Next(m1) = Next(l1).

(7) For every elementi of InstrSCM such thati = I and for everySCM-stateSsuch thatS= s
holds Exec(I ,s) = Exec-ResSCM(i,S).

2. USERS GUIDE

We now state several propositions:

(8) (Exec(a:=b,s))(ICSCM) = Next(IC s) and(Exec(a:=b,s))(a) = s(b) and for everyc such
thatc 6= a holds(Exec(a:=b,s))(c) = s(c).

(9) (Exec(AddTo(a,b),s))(ICSCM) = Next(IC s) and(Exec(AddTo(a,b),s))(a) = s(a)+s(b)
and for everyc such thatc 6= a holds(Exec(AddTo(a,b),s))(c) = s(c).

(10) (Exec(SubFrom(a,b),s))(ICSCM) = Next(IC s) and(Exec(SubFrom(a,b),s))(a) = s(a)−
s(b) and for everyc such thatc 6= a holds(Exec(SubFrom(a,b),s))(c) = s(c).

1 The proposition (3) has been removed.
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(11) (Exec(MultBy(a,b),s))(ICSCM) = Next(ICs) and(Exec(MultBy(a,b),s))(a) = s(a) ·s(b)
and for everyc such thatc 6= a holds(Exec(MultBy(a,b),s))(c) = s(c).

(12)(i) (Exec(Divide(a,b),s))(ICSCM) = Next(ICs),

(ii) if a 6= b, then(Exec(Divide(a,b),s))(a) = s(a)÷s(b),

(iii) (Exec(Divide(a,b),s))(b) = s(a)mods(b), and

(iv) for everyc such thatc 6= a andc 6= b holds(Exec(Divide(a,b),s))(c) = s(c).

(13) (Exec(goto l1,s))(ICSCM) = l1 and(Exec(goto l1,s))(c) = s(c).

(14) If s(a) = 0, then(Exec(if a= 0 goto l1,s))(ICSCM) = l1 and ifs(a) 6= 0, then(Exec(if a=
0 goto l1,s))(ICSCM) = Next(ICs) and(Exec(if a = 0 goto l1,s))(c) = s(c).

(15) If s(a) > 0, then(Exec(if a> 0 goto l1,s))(ICSCM) = l1 and ifs(a)≤ 0, then(Exec(if a>
0 goto l1,s))(ICSCM) = Next(ICs) and(Exec(if a > 0 goto l1,s))(c) = s(c).

One can verify thatSCM is halting.

3. PRELIMINARIES

One can prove the following proposition

(18)2 For all integersm, j holdsm· j ≡ 0(modm).

The schemeINDI deals with natural numbersA , B and a unary predicateP , and states that:
P [B]

provided the parameters satisfy the following conditions:
• P [0],
• A > 0, and
• For all i, j such thatP [A · i] and j 6= 0 and j ≤ A holdsP [A · i + j].

We now state a number of propositions:

(19) Let X, Y be non empty sets andf , g be partial functions fromX to Y. Suppose that for
every elementx of X and for every elementy of Y holds〈〈x, y〉〉 ∈ f iff 〈〈x, y〉〉 ∈ g. Then f = g.

(20) For all functionsf , g and for all setsA, B such that f �A = g�A and f �B = g�B holds
f �(A∪B) = g�(A∪B).

(21) For every setX and for all functionsf , g such that domg⊆ X andg⊆ f holdsg⊆ f �X.

(22) For every functionf and for every setx such thatx∈ dom f holds f �{x}= {〈〈x, f (x)〉〉}.

(23) For every functionf and for every setX such thatX misses domf holds f �X = /0.

(24) For all functionsf , g and for every setx such that domf = domg and f (x) = g(x) holds
f �{x}= g�{x}.

(25) For all functionsf , g and for all setsx, y such that domf = domg and f (x) = g(x) and
f (y) = g(y) holds f �{x,y}= g�{x,y}.

(26) Let f , g be functions andx, y, zbe sets. If domf = domg and f (x) = g(x) and f (y) = g(y)
and f (z) = g(z), then f �{x,y,z}= g�{x,y,z}.

(27) For all setsa, b and for every functionf such thata∈ dom f and f (a) = b holdsa7−→. b⊆ f .

(29)3 For all setsa, b, c, d and for every functionf such thata ∈ dom f andc ∈ dom f and
f (a) = b and f (c) = d holds[a 7−→ b,c 7−→ d]⊆ f .

2 The propositions (16) and (17) have been removed.
3 The proposition (28) has been removed.
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4. SOME REMARKS ON AMI-STRUCT

In the sequelN denotes a set.
Next we state the proposition

(31)4 For every AMISoverN and for every finite partial statep of Sholdsp∈ FinPartSt(S).

Let N be a set and letSbe an AMI overN. Observe that FinPartSt(S) is non empty.
We now state two propositions:

(32) For every AMISoverN holds every element of FinPartSt(S) is a finite partial state ofS.

(33) LetSbe an AMI overN andF1, F2 be partial functions from FinPartSt(S) to FinPartSt(S).
Suppose that for all finite partial statesp, q of S holds 〈〈p, q〉〉 ∈ F1 iff 〈〈p, q〉〉 ∈ F2. Then
F1 = F2.

The schemeEqFPSFuncdeals with a non empty setA with non empty elements, an AMIB
over A , partial functionsC , D from FinPartSt(B) to FinPartSt(B), and a binary predicateP , and
states that:

C = D
provided the parameters meet the following conditions:

• For all finite partial statesp, q of B holds〈〈p, q〉〉 ∈ C iff P [p,q], and
• For all finite partial statesp, q of B holds〈〈p, q〉〉 ∈D iff P [p,q].

Let N be a set with non empty elements, letS be an IC-Ins-separated definite non empty non
void AMI over N, and letl be an instruction-location ofS. The functor Start-At(l) yielding a finite
partial state ofS is defined by:

(Def. 12) Start-At(l) = ICS7−→. l .

In the sequelN denotes a set with non empty elements.
One can prove the following proposition

(34) Let S be an IC-Ins-separated definite non empty non void AMI overN and l be an
instruction-location ofS. Then domStart-At(l) = {ICS}.

Let N be a set, letSbe an AMI overN, and letI1 be a finite partial state ofS. We say thatI1 is
programmed if and only if:

(Def. 13) domI1 ⊆ the instruction locations ofS.

Let N be a set and letSbe an AMI overN. Note that there exists a finite partial state ofSwhich
is programmed.

We now state four propositions:

(35) LetN be a set,S be an AMI overN, andp1, p2 be programmed finite partial states ofS.
Thenp1+·p2 is programmed.

(36) For every non void AMISoverN and for every states of Sholds doms= the carrier ofS.

(37) For every AMISoverN and for every finite partial statep of Sholds domp⊆ the carrier
of S.

(38) LetSbe a steady-programmed IC-Ins-separated definite non empty non void AMI overN,
p be a programmed finite partial state ofS, ands be a state ofS. If p⊆ s, then for everyk
holdsp⊆ (Computation(s))(k).

Let us considerN, let Sbe an IC-Ins-separated non empty non void AMI overN, let sbe a state
of S, and letl be an instruction-location ofS. We say thats starts atl if and only if:

4 The proposition (30) has been removed.
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(Def. 14) ICs = l .

Let us considerN, let Sbe an IC-Ins-separated halting non empty non void AMI overN, let sbe
a state ofS, and letl be an instruction-location ofS. We say thats halts atl if and only if:

(Def. 15) s(l) = haltS.

We now state the proposition

(39) For every non void AMISoverN and for every finite partial statep of Sthere exists a state
s of Ssuch thatp⊆ s.

Let us considerN, let S be a definite IC-Ins-separated non empty non void AMI overN, and
let p be a finite partial state ofS. Let us assume thatICS ∈ domp. The functorIC p yields an
instruction-location ofSand is defined as follows:

(Def. 16) IC p = p(ICS).

Let us considerN, let S be a definite IC-Ins-separated non empty non void AMI overN, let p
be a finite partial state ofS, and letl be an instruction-location ofS. We say thatp starts atl if and
only if:

(Def. 17) ICS∈ domp andIC p = l .

Let us considerN, let Sbe a definite IC-Ins-separated halting non empty non void AMI overN,
let p be a finite partial state ofS, and letl be an instruction-location ofS. We say thatp halts atl if
and only if:

(Def. 18) l ∈ domp andp(l) = haltS.

We now state a number of propositions:

(40) LetSbe an IC-Ins-separated definite steady-programmed halting non empty non void AMI
overN ands be a state ofS. Thens is halting if and only if there existsk such thats halts at
IC (Computation(s))(k).

(41) LetSbe an IC-Ins-separated definite steady-programmed halting non empty non void AMI
overN, s be a state ofS, p be a finite partial state ofS, andl be an instruction-location ofS.
If p⊆ s andp halts atl , thens halts atl .

(42) LetSbe a halting steady-programmed IC-Ins-separated definite non empty non void AMI
overN, sbe a state ofS, and givenk. If s is halting, then Result(s) = (Computation(s))(k) iff
s halts atIC (Computation(s))(k).

(43) LetSbe a steady-programmed IC-Ins-separated definite non empty non void AMI overN,
s be a state ofS, p be a programmed finite partial state ofS, and givenk. Thenp⊆ s if and
only if p⊆ (Computation(s))(k).

(44) LetSbe a halting steady-programmed IC-Ins-separated definite non empty non void AMI
over N, s be a state ofS, and givenk. If s halts atIC (Computation(s))(k), then Result(s) =
(Computation(s))(k).

(45) Supposei ≤ j. Let Sbe a halting steady-programmed IC-Ins-separated definite non empty
non void AMI overN ands be a state ofS. If s halts atIC (Computation(s))(i), thens halts at
IC (Computation(s))( j).

(46) Supposei ≤ j. Let S be a halting steady-programmed IC-Ins-separated definite non
empty non void AMI overN and s be a state ofS. If s halts atIC (Computation(s))(i), then
(Computation(s))( j) = (Computation(s))(i).

(47) LetSbe a steady-programmed IC-Ins-separated halting definite non empty non void AMI
overN ands be a state ofS. If there existsk such thats halts atIC (Computation(s))(k), then for
everyi holds Result(s) = Result((Computation(s))(i)).
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(48) LetSbe a steady-programmed IC-Ins-separated definite halting non empty non void AMI
overN, sbe a state ofS, l be an instruction-location ofS, and givenk. Thenshalts atl if and
only if (Computation(s))(k) halts atl .

(49) LetSbe a definite IC-Ins-separated non empty non void AMI overN, p be a finite partial
state ofS, andl be an instruction-location ofS. Supposep starts atl . Let s be a state ofS. If
p⊆ s, thens starts atl .

(50) Let S be an IC-Ins-separated definite non empty non void AMI overN and l be an
instruction-location ofS. Then Start-At(l)(ICS) = l .

Let us considerN, let S be a definite IC-Ins-separated non empty non void AMI overN, let l
be an instruction-location ofS, and letI be an element of the instructions ofS. Then l 7−→. I is a
programmed finite partial state ofS.

5. INSTRUCTIONLOCATIONS AND DATA LOCATIONS

We now state the proposition

(51) SCM is realistic.

Let us observe thatSCM is steady-programmed and realistic.
Let k be a natural number. The functordk yields a data-location and is defined by:

(Def. 19) dk = 2·k+1.

The functorik yields an instruction-location ofSCM and is defined by:

(Def. 20) ik = 2·k+2.

In the sequeli, j, k are natural numbers.
We now state four propositions:

(52) If i 6= j, thendi 6= d j .

(53) If i 6= j, theni i 6= i j .

(54) Next(ik) = ik+1.

(55) For every data-locationl holds ObjectKind(l) = Z.

Let l2 be a data-location and leta be an integer. Thenl2 7−→. a is a finite partial state ofSCM.
Let l2, l3 be data-locations and leta, b be integers. Then[l2 7−→ a, l3 7−→ b] is a finite partial

state ofSCM.
One can prove the following propositions:

(56) di 6= i j .

(57) ICSCM 6= di andICSCM 6= i i .

6. HALT INSTRUCTION

One can prove the following propositions:

(58) For every instructionI of SCM such that there existss such that(Exec(I ,s))(ICSCM) =
Next(ICs) holdsI is non halting.

(59) For every instructionI of SCM such thatI = 〈〈0, /0〉〉 holdsI is halting.

(60) a:=b is non halting.

(61) AddTo(a,b) is non halting.
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(62) SubFrom(a,b) is non halting.

(63) MultBy(a,b) is non halting.

(64) Divide(a,b) is non halting.

(65) gotol1 is non halting.

(66) if a = 0 goto l1 is non halting.

(67) if a > 0 goto l1 is non halting.

(68) 〈〈0, /0〉〉 is an instruction ofSCM.

(69) LetI be a set. ThenI is an instruction ofSCM if and only if one of the following conditions
is satisfied:

I = 〈〈0, /0〉〉 or there exista, b such thatI = a:=b or there exista, b such thatI = AddTo(a,b)
or there exista, b such thatI = SubFrom(a,b) or there exista, b such thatI = MultBy(a,b)
or there exista, b such thatI = Divide(a,b) or there existsl1 such thatI = goto l1 or there
exista, l1 such thatI = if a = 0 goto l1 or there exista, l1 such thatI = if a > 0 goto l1.

(70) For every instructionI of SCM such thatI is halting holdsI = haltSCM.

(71) haltSCM = 〈〈0, /0〉〉.
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