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Summary. We prove some results @CM needed for the proof of the correctness of
Euclid’s algorithm. We introduce the following concepts:

- starting finite partial state (Start-A}), then assigns to the instruction counter an in-
struction location (and consists only of this assignment),

- programmed finite partial state, that consists of the instructions (to be more precise, a
finite partial state with the domain consisting of instruction locations).

We define for a total statewhat it means that starts at (the value of the instruction counter
in the statesis |) ands halts atl (the halt instruction is assigned kan the states). Similar
notions are defined for finite partial states.

MML Identifier: AMI_ 3.

WWW: http://mizar.org/JFM/Vol5/ami_3.html

The articlesl[15],[[14],[[19],[[8],.[2],[{1/7],[[6].[],[[18],[I1],[16].[[8].[4],[[18],[[20],[[8].[[10],[I5],
[11], and [12] provide the notation and terminology for this paper.

1. A SMALL CONCRETE MACHINE

In this papeit, j, k are natural numbers.
The strict AMISCM over {Z} is defined as follows:

(Def. 1) SCM = (N, 0, Instr-Locscm, Zg, Instrscm, OKscm, EXeGsem).

One can verify thaBCM is non empty and non void.
Next we state two propositions:

(1) SCM is data-oriented.
(2) SCMis definite.

One can check th&CM is IC-Ins-separated, data-oriented, and definite.
An object of SCM is called a data-location if:

(Def. 2) Ite Data-Logcwm.

Letsbe a state 06CM and letd be a data-location. Thes{fd) is an integer.

We use the following conventiom, b, c denote data-locationk, denotes an instruction-location
of SCM, andl denotes an instruction &CM.

Let us consideg, b. The functora:=b yielding an instruction o6CM is defined as follows:
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(Def. 3) a:=b=(1, (a,b)).
The functor AddTéa, b) yields an instruction o6CM and is defined by:
(Def. 4) AddTga,b) = (2, (a,b)).
The functor SubFroffa, b) yielding an instruction o6CM is defined as follows:
(Def. 5) SubFrona,b) = (3, (a,b)).
The functor MultBya, b) yielding an instruction o5CM is defined by:
(Def. 6) MultBy(a,b) = (4, (a,h)).
The functor Dividéa, b) yielding an instruction o8CM is defined as follows:
(Def. 7) Dividga,b) = (5, (a,b)).
Let us consideh;. The functor gotd; yields an instruction c8CM and is defined by:
(Def. 8) gotoly = (6, (I1)).
Let us considea. The functoiif a= 0 gotol; yielding an instruction o6CM is defined as follows:
(Def.9) ifa=0gotoly = (7, (I1,a)).
The functorif a > 0 gotol4 yields an instruction 06CM and is defined as follows:
(Def. 10) if a>0gotoly = (8, (I1,a)).

In the sequesis a state o65CM.
The following propositions are true:

@f] 1ICsem=0.
(5) For everySCM-stateSsuch thaS= sholdsICs=ICs.

Letl; be an instruction-location @CM. The functor Nexl1) yielding an instruction-location
of SCM is defined as follows:

(Def. 11) There exists an elemamt of Instr-Locscm such thatmy = 11 and Nextl;) = Next(my ).
The following two propositions are true:

(6) For every instruction-location of SCM and for every elementy of Instr-Logscm such
thatmy = |1 holds Nextm;) = Next(l1).

(7) For every elemeritof Instrscy such thai = | and for everySCM-stateS such thatS=s
holds Exe¢l,s) = Exec-Rescwm(i, S).

2. USERS GUIDE

We now state several propositions:

(8) (Exedqa:=b,s))(ICscm) = Next(ICs) and(Exeda:=h,s))(a) = s(b) and for everyc such
thatc # a holds(Exeda:=b,s))(c) = s(c).

(9) (ExedAddTo(a,b),s))(ICscm) = Next(ICs) and(ExeqAddTo(a, b),s))(a) = s(a) + s(b)
and for everyc such that # a holds(Exeq AddTo(a, b),s))(c) = s(c).

(10) (ExeqSubFronta,b),s))(ICscm) = Next(ICs) and(Exed SubFronfa,b),s))(a) = s(a) —
s(b) and for everyc such that # a holds(Exeq SubFronfa, b), s))(c) = s(c).

1 The proposition (3) has been removed.
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(11) (ExedMultBy(a,b),s))(ICscm) = Next(ICs) and(Exed MultBy(a,b),s))(a) =s(a) - s(b)
and for everyc such that # a holds(ExedMultBy(a, b),s))(c) = s(c).
(12)(i)) (ExeqDivide(a,b),s))(ICscm) = Next(ICs),
(i) if a# b, then(ExedDivide(a,b),s))(a) = s(a) +s(b),
(i)  (ExeqDivide(a,b),s))(b) = s(a) mods(b), and
(iv) for everyc such that +# a andc # b holds(ExeqDivide(a,b),s))(c) = s(c).
(13) (Exedqgotoly,s))(ICscm) =1 and(Exeqgotoly,s))(c) = s(c).

(14) Ifs(a) =0, then(Exedif a=0gotols,s))(ICscm) =1 and ifs(a) #

then(Exedif a=
0gotoly,s))(ICscm) = Next(ICs) and(Exedif a=0gotol,s))(c) ).

0,

s(c
0, then(Exedif a >
s(c

(15) Ifs(a) > 0, then(Exedif a>0gotoly,s))(ICscm) =11 andifs(a) <

t
0gotoly,s))(ICscm) = Next(ICs) and(Exedif a> 0gotoly,s))(c) ).

One can verify thaSCM is halting.

3. PRELIMINARIES
One can prove the following proposition
(18E] For all integersm, j holdsm- j = 0O(modm).

The scheméNDI deals with natural number8, B and a unary predicatg, and states that:
P[B]
provided the parameters satisfy the following conditions:
e P[0],
e 4>0,and
e Foralli, j suchthatP[4-i] andj # 0 andj < 4 holds?[4 i + j].
We now state a number of propositions:

(19) LetX,Y be non empty sets anf] g be partial functions fronX to Y. Suppose that for
every element of X and for every elementof Y holds{x, y} € f iff {x,y) € g. Thenf =g.

(20) For all functionsf, g and for all setsA, B such thatf [A = gJA and f[B = g[B holds
fI(AUB) =g[(AUB).

(21) For every seX and for all functionsf, g such that dorg C X andg C f holdsg C f[X.
(22) For every functiorf and for every set such thak € domf holds f [{x} = {{x, f(X))}.
(23) For every functiorf and for every seX such thaX misses doni holds f [X = 0.

(24) For all functionsf, g and for every sex such that doni = domg and f(x) = g(x) holds
fi{x} =gl{x}.

(25) For all functionsf, g and for all sets, y such that doni = domg and f(x) = g(x) and
f(y) = 9(y) holdsf [{x,y} = g[{x,y}.

(26) Letf, gbe functions and, y, zbe sets. If donf = domg and f (x) = g(x) and f(y) = g(y)
andf(2) =g(2), thenf [{x,y,z} = gl{x,y,z}.

(27) Forall sets, band for every functiorf such thaa € domf andf (a) = b holdsa——b C f.

(29F] For all setsa, b, ¢, d and for every functiorf such thata € domf andc € domf and
f(a) =bandf(c) =d holds[a+— b,c+——d] C f.

2 The propositions (16) and (17) have been removed.
3 The proposition (28) has been removed.
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4. SOME REMARKS ONAMI-STRUCT

In the sequeN denotes a set.
Next we state the proposition

(31@ For every AMISoverN and for every finite partial stateof Sholdsp € FinPartS(S).

LetN be a set and lesbe an AMI overN. Observe that FinPart() is non empty.
We now state two propositions:

(32) Forevery AMISoverN holds every element of FinPartS} is a finite partial state d&.

(33) LetSbe an AMI overN andFy, F, be partial functions from FinPart&) to FinPartStS).
Suppose that for all finite partial statgs q of S holds (p,q) € F; iff {p,q) € F.. Then
F=F.

The schemdgFPSFundaeals with a non empty set with non empty elements, an AMB
over 4, partial functionsC, D from FinPartS{B) to FinPartStB), and a binary predicat®, and
states that:

C=9D
provided the parameters meet the following conditions:
e For all finite partial statep, q of B holds{p, q) € C iff P[p,q], and
e For all finite partial statep, q of B holds{p, q) € D iff P[p,q).

Let N be a set with non empty elements, &be an IC-Ins-separated definite non empty non
void AMI over N, and letl be an instruction-location @& The functor Start-At) yielding a finite
partial state oSis defined by:

(Def. 12) Start-Afl) = ICg——l.

In the sequeN denotes a set with non empty elements.
One can prove the following proposition

(34) Let S be an IC-Ins-separated definite hon empty non void AMI oMeand | be an
instruction-location ofs. Then dom Start-At) = {ICs}.

LetN be a set, leSbe an AMI overN, and letl; be a finite partial state & We say that; is
programmed if and only if:

(Def. 13) domy C the instruction locations d

LetN be a set and Iésbe an AMI overN. Note that there exists a finite partial stateSafhich
is programmed.
We now state four propositions:

(35) LetN be a setSbe an AMI overN, andp;, p2 be programmed finite partial states ®f
Thenp;+-pz is programmed.

(86) For every non void AMBoverN and for every state of Sholds dons = the carrier ofS.

(87) For every AMISoverN and for every finite partial state of Sholds donp C the carrier
of S

(38) LetShe a steady-programmed IC-Ins-separated definite non empty non void AMNover
p be a programmed finite partial state §fands be a state o8. If p C s, then for evenk
holds p C (Computatiofs)) (k).

Let us consideN, let She an IC-Ins-separated non empty non void AMI oMetet s be a state
of S and letl be an instruction-location & We say thas starts at if and only if:

4 The proposition (30) has been removed.
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(Def. 14) ICs=1.

Let us consideN, let Sbe an IC-Ins-separated halting non empty non void AMI dvelet s be
a state ofS, and letl be an instruction-location & We say thas halts atl if and only if:

(Def. 15) s(l) = halts.
We now state the proposition

(39) For every non void AMBoverN and for every finite partial statgof Sthere exists a state
sof Ssuch thatp C s.

Let us consideN, let S be a definite IC-Ins-separated non empty non void AMI dieand
let p be a finite partial state db. Let us assume thdCs € domp. The functorIC yields an
instruction-location oSand is defined as follows:

(Def. 16) IC, = p(ICyg).

Let us consideN, let Sbe a definite IC-Ins-separated non empty non void AMI d\efet p
be a finite partial state &, and letl be an instruction-location && We say thap starts al if and
only if:

(Def. 17) ICsedompandICp=1.

Let us consideN, let Sbe a definite IC-Ins-separated halting non empty non void AMI dijer
let p be a finite partial state @&, and letl be an instruction-location &. We say thap halts atl if
and only if:

(Def. 18) | € dompandp(l) = halts.

We now state a number of propositions:

(40) LetSbe an IC-Ins-separated definite steady-programmed halting non empty non void AMI

overN ands be a state o6. Thensis halting if and only if there existk such thats halts at
IC (Computatiofts)) (k) -

(41) LetSbe an IC-Ins-separated definite steady-programmed halting non empty non void AMI

overN, sbe a state o§, p be a finite partial state @&, andl be an instruction-location .
If pC sandp halts atl, thenshalts atl.

(42) LetShbe a halting steady-programmed IC-Ins-separated definite non empty non void AMI

overN, sbe a state 08, and giverk. If sis halting, then Resuls) = (Computatiors)) (k) iff
shalts atiC (Computatiots)) (k) -
(43) LetSbe a steady-programmed IC-Ins-separated definite non empty non void AMNover

sbe a state 08, p be a programmed finite partial state®fand giverk. Thenp C sif and
only if p C (Computatiois))(K).

(44) LetSbe a halting steady-programmed IC-Ins-separated definite non empty non void AMI

over N, s be a state of5, and givenk. If s halts atlC computatiots))(k)» then Resulls) =
(Computatiorfs))(K).

(45) Supposé< j. Let Sbe a halting steady-programmed IC-Ins-separated definite non empty

non void AMI overN ands be a state of. If s halts atIC (computatiors))(i)» thens halts at
IC (Computatiots))(j) -
(46) Suppose < j. Let S be a halting steady-programmed IC-Ins-separated definite non

empty non void AMI overN ands be a state ofs. If s halts atlC computatiors))(i), then
(Computatioifs))(j) = (Computatiors))(i).

(47) LetSbe a steady-programmed IC-Ins-separated halting definite non empty non void AMI

overN ands be a state o8 If there existk such thas halts atiC (computatiors)) (k) then for
everyi holds Resulfs) = Resulf(Computatiof(s))(i)).
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(48) LetSbe a steady-programmed IC-Ins-separated definite halting non empty non void AMI
overN, sbe a state 0§, | be an instruction-location &, and giverk. Thenshalts atl if and
only if (Computations))(k) halts af.

(49) LetSbe a definite IC-Ins-separated non empty non void AMI d\ep be a finite partial
state ofS, andl be an instruction-location &. Suppose starts al. Letsbe a state o8. If
p C s, thens starts at.

(50) Let S be an IC-Ins-separated definite hon empty non void AMI oMeaend | be an
instruction-location ofs. Then Start-Afl)(ICs) = 1.

Let us consideN, let Sbe a definite IC-Ins-separated non empty non void AMI d\etet |
be an instruction-location db, and letl be an element of the instructions 8f Thenl——l is a
programmed finite partial state 8f

5. INSTRUCTIONLOCATIONS AND DATA LOCATIONS
We now state the proposition
(51) SCMiisrealistic.

Let us observe th&CM is steady-programmed and realistic.
Let k be a natural number. The functdy yields a data-location and is defined by:

(Def. 19) dx=2-k+1.
The functorig yields an instruction-location 8CM and is defined by:
(Def. 20) ix=2-k+2.

In the sequel, j, k are natural numbers.
We now state four propositions:

(52) Ifi+# j,thend; #d;.

(53) Ifi#j,thenij #ij.

(54) Nextix) = ikt1.

(55) For every data-locatidnholds ObjectKindl ) = Z.

Letl, be a data-location and latbe an integer. Theh——a is a finite partial state cBCM.

Letl,, I3 be data-locations and let b be integers. Thefl, — a, I3 —— b] is a finite partial
state ofSCM.

One can prove the following propositions:

(56) di #ij.
(57) ICscm #di andICscm # -

6. HALT INSTRUCTION
One can prove the following propositions:

(58) For every instructiom of SCM such that there existssuch that(Exed],s))(ICscm) =
Next(ICs) holdsl is non halting.

(59) For every instructioh of SCM such that = (0, 0) holdsl is halting.
(60) a:=bis non halting.
(61) AddTqa,b) is non halting.
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(62) SubFronfa,b) is non halting.
(63) MultBy(a,b) is non halting.

(64) Divide(a,b) is non halting.

(65) gotols is non halting.

(66) if a=0gotols is non halting.

(67) if a> 0gotols is non halting.

(68) (0, 0) is an instruction oSCM.

(69) Letl be a set. Thehis an instruction o6CM if and only if one of the following conditions

is satisfied:

I = (0, 0) or there exish, b such thal = a:=b or there exish, b such that = AddTo(a, b)
or there exish, b such thal = SubFronga,b) or there exisg, b such that = MultBy(a,b)
or there exist, b such that = Divide(a,b) or there existd; such that = gotol; or there
exista, |1 such that =if a= 0gotol; or there exish, |1 such that = if a > 0gotol;.

(70) For every instructioh of SCM such that is halting holdd = haltscy.

(71) haltscm = (0, 0).
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