
Towards Standardized Mizar Environments

Adam Naumowicz

Institute of Informatics, University of Biaªystok,
Konstantego Cioªkowskiego 1M, 15-245 Biaªystok, Poland

adamn@math.uwb.edu.pl

Abstract. The e�ectiveness of formalizing substantial parts of mathe-
matics largely depends on the availability of relevant background knowl-
edge. The bigger the knowledge library, however, the harder it is to spec-
ify what is or should be relevant. Even with today's size of the libraries
available for various proof assistants, importing the whole library is not
an option for practical performance reasons. On the other hand, too de-
tailed import machanisms are prone to dependency problems and pose
certain di�culty for the user. In this paper we present the key ideas of
a project aimed at generating standardized formalization environments
which could be used to facilitate developing new formalizations based on
the current content of the Mizar Mathematical Library.

1 Introduction

Accumulating and reusing all previously formalized data in a form of a standard
library is a necessity for today's proof assistant systems involved in large for-
malization projects. The way in which a given system allows to import available
data from its library varies across most proof assistants with di�erent foun-
dations and implementation. But a common feature seems to be a �le-based
library items organization. For example, HOL Light has the import handled by
its metalanguage OCaml's #use and the needs directive [1], there is the Require
[Import|Export] in Coq [2], or the imports directive in Isabelle/Isar [3] and so
on. In the current Mizar [4, 5] system1 there are several importing directives with
di�erent roles and semantics. Especially for users of other systems, the original
Mizar importing method based on a set of rather �ne-grained import directives
might seem cumbersome and unnecessarily complicated. This is the main mo-
tivation for the extension of the standard Mizar utilities and a corresponding
language addition presented in this paper. However, the proposed solution is
not meant to completely replace the current importing methods, but rather help
the users to easily start writing Mizar formalizations without too much prob-
lems with setting-up a working environment containing required items from the
standard library.

It should be noted that the original Mizar importing mechanism comes from
the times of rather scarce computer resources (RAM, storage, computational

1 http://mizar.org



power), when it was designed as a practical solution to cope with these limi-
tations. However, despite its intricacy, it still works reasonably well nowadays
when the complexity of the formalized developments grows. Maintaining the
collection of interdependent articles forming the Mizar Mathematical Library
(MML) based on these �ne-grained dependencies is one of the factors that most
of the current complex formalization developments are still processed in seconds
or minutes rather than hours, which is sometimes the case with other proof
environments. Note also, that even more �ne-grained access to every particular
de�nitions and proofs can sometimes be desirable, as shown by the mizar-items
project [6] aimed at reconstructing the prerequisites of theorems in the spirit of
reverse mathematics.

2 Mizar Library Importing Speci�cs

Let us brie�y recall here that an environment of a typical Mizar article contains
a series of directives importing various sorts of notions from articles previously
available in the MML (or a local data base). Basic information about each di-
rective can be found in the Mizar user's manual [7].

The directives are vocabularies, notations, constructors, registrations,
requirements, definitions, equalities, expansions, theorems and schemes.
Apart from requirements and vocabularies, each directive contains a list of
(usually a couple dozen) article names whose data should be imported to give
a certain meaning to the newly developed formalization. For a detailed expla-
nation of the functional and implementational aspects of the more advanced di-
rectives: registrations, reductions, equalities and expansions, the reader
may consult [12], [13] , [14] and [15], respectively.

The requirements directive accepts as its arguments speci�c names which do
not directly correspond to any formalization article, but instead provide means
to switch on special processing for selected highly-used notions, e.g. BOOLE for
automating Boolean operations on sets [8], or ARITHM for automating the arith-
metic of real and complex numbers [9].

Originally, the vocabularies directive was a means of instroducing symbols
in special �les not associated with any particular Mizar article, so that the same
symbols could later be shared by multiple articles and freely overloaded by vari-
ous notations. However, today's practice of the Library Committee maintaining
the MML is to name these �les in accordance with the name of the �rst article
introducing a given symbol. One might obviously come to the idea that this
whole set of symbols should be represented as one common resource. However,
if we make such an experiment, then it is shown immediately that some of the
symbols which the authors are perfectly allowed to use in speci�c contexts, can
cause syntactic problems in others. A simple example is the use of a symbol like
[x] for denoting a product of objects in a category [10]:

definition

let C be non void non empty ProdCatStr;



let a,b be Object of C;

func a [x] b -> Object of C equals

(the CatProd of C).(a,b);

...

end;

and this obviously would cause a syntactic error with passing scheme argu-
ments like e.g. in the very formulation of the separation scheme [11]:

scheme

Separation { A()-> set, P[object] } :

ex X being set st for x holds x in X iff x in A() & P[x]

...

end;

With 8863 symbols in current use (1933 attributes, 4825 functors, 37 left
brackets, 37 right brackets, 936 modes, 752 predicates, 175 selectors, and 168
structures)2 the syntactic clashes would be practically unavoidable.

The rest of the directives, at least from the syntactic point of view, behave
in a similar way, so it is reasonable to combine them into one common import

directive, which should work as a macro merging `behind the scene' several dif-
ferent directives. This functionality has been implemented to re�ect the situation
that some resources with the common name might not necessarily exist in the
library. One should be able to import all the possible items from an article even
if some of the imported notions were not exported to the library (e.g. most ar-
ticles contain theorems, but many do not provide schemes, or new notations,
registrations, etc.).

Table 1 below shows some statistics of how the directives are used in the
current MML articles.

Table 1. Average number of directives per article.

Directive Avg. number of article names
constructors 12.5376
definitions 3.41117
equalities 3.84251
expansions 2.77502
notations 26.879
registrations 15.4981
requirements 4.05275
schemes 2.56943
theorems 24.9581
vocabularies 29.3165

2 According to the statistics provided by MMLQuery, http://fm.uwb.edu.pl/

mmlquery/fillin.php?filledfilename=statistics.mqt&argument=number+1&

version=5.40.1289



It should also be noted that for some of the Mizar environment directives the
order in which their arguments appear in the article may be relevant, because
of the concrete implementation limitations, e.g. registrations of adjectives
and reductions or equalities. For notations and definitions the ordering is
meaningful by design.

Preserving the ordering is useful to avoid errors caused by the overloading
of popular symbols heavily used in the library. However, there might be cases of
overly complicated environments, that the current state of the library may not
allow to apply this normalization.

In each MML version, such a reference list is available in the mml.lar �le,
which lists all the processable MML articles, starting from the axiomatic TARSKI.
So, users are generally encouraged to construct their environments in accordance
with the ordering given by this list, if it can be done without di�culty.

3 Generating Standardized Environments

The proposed improvement of the user interface for accessing the library is based
on introducing a new imports directive to the Mizar language and implementing
it in the relevant software (the Accommodator, cf. [7]). Although the new
directive is primarily devised to be useful when creating new formalizations from
scratch, we should also be able to re-introduce it to the available MML articles
to anticipate potential problems that may result from its use and propose ready
solutions. Such standardized environments for MML articles can be prepared in
two simple steps with the help of a set of PERL scripts which are distributed
with Mizar [16] to facilitate the analysis of MML articles' environments and their
transformations.

Firstly, we can replace all the underlying directives' names into the new
import keyword and then use an adjusted version of the sortenv.pl script, to
turn them into one import directive without any repetitions among its argu-
ments. The sorting obviously helps to keep the article's new combined environ-
ment in sync with the natural ordering of how the MML has been built from the
axiomatic notions provided by mml.lar. Comparing to the numbers presented
in Table 1, we can note that the new imports directives in MML articles have
on average 38.5392 �les as their arguments.

3.1 Examples

It turns out that if we automatically introduce the new imports directive to
the current MML, 560 out of 1289 articles (43%) require some changes (in the
environment ordering or adjusting the text proper part). We may, for example,
look at selected �les from the YELLOW series of articles that contain the intro-
ductory material formalized during the project of encoding in Mizar a handbook
of continuous lattices (CCL) [17]. These articles are more or less in the middle
of the mml.lar list, so they are quite advanced. On the other hand, they were



developed to �ll gaps from several theories (topology, lattices and ordered sets),
so they can simulate quite well a typical formalization.

The �rst article from this series which does not proof check without errors
after automatically generating its environment with the new import directive is
YELLOW_3 [18].

The original environment declaration in the current MML version3 looks like
this:

environ

vocabularies XBOOLE_0, SUBSET_1, TARSKI, ORDERS_2, WAYBEL_0, XXREAL_0,

ZFMISC_1, RELAT_1, MCART_1, LATTICE3, RELAT_2, LATTICES, YELLOW_0,

EQREL_1, REWRITE1, ORDINAL2, FUNCT_1, STRUCT_0, YELLOW_3;

notations TARSKI, XBOOLE_0, ZFMISC_1, XTUPLE_0, SUBSET_1, RELAT_1, RELAT_2,

RELSET_1, MCART_1, DOMAIN_1, FUNCT_2, BINOP_1, STRUCT_0, ORDERS_2,

LATTICE3, YELLOW_0, WAYBEL_0;

constructors DOMAIN_1, LATTICE3, ORDERS_3, WAYBEL_0, RELSET_1, XTUPLE_0;

registrations XBOOLE_0, SUBSET_1, RELSET_1, STRUCT_0, LATTICE3, YELLOW_0,

ORDERS_2, WAYBEL_0, RELAT_1, XTUPLE_0;

requirements SUBSET, BOOLE;

definitions LATTICE3, RELAT_2, TARSKI, WAYBEL_0, ORDERS_2;

expansions LATTICE3, RELAT_2, WAYBEL_0, ORDERS_2;

theorems FUNCT_1, FUNCT_2, FUNCT_5, LATTICE3, MCART_1, ORDERS_2, RELAT_1,

RELAT_2, RELSET_1, TARSKI, WAYBEL_0, YELLOW_0, YELLOW_2, ZFMISC_1,

XBOOLE_0, BINOP_1, XTUPLE_0;

schemes FUNCT_7, RELAT_1;

And the standardised version looks as follows (please mind that the directives
vocabularies and requirements stayed intact):

environ

vocabularies XBOOLE_0, SUBSET_1, TARSKI, ORDERS_2, WAYBEL_0, XXREAL_0,

ZFMISC_1, RELAT_1, MCART_1, LATTICE3, RELAT_2, LATTICES, YELLOW_0,

EQREL_1, REWRITE1, ORDINAL2, FUNCT_1, STRUCT_0, YELLOW_3;

requirements SUBSET, BOOLE;

imports RELAT_1, TARSKI, XBOOLE_0, XTUPLE_0, ZFMISC_1, SUBSET_1, FUNCT_1,

RELAT_2, RELSET_1, MCART_1, FUNCT_2, BINOP_1, DOMAIN_1, FUNCT_5, FUNCT_7,

STRUCT_0, LATTICE3, YELLOW_0, ORDERS_2, ORDERS_3, WAYBEL_0, YELLOW_2;

Several errors reported in this article with the new environment are caused
by the reorganized set of imported de�nitions. As a solution it is enough to move
the RELAT_1 article name before TARSKI, so that inclusion between two relations
can be proved according to the original de�nition for simple sets rather than
using a more specialized condition in the case of relations that comes from the
rede�nition in RELAT_1. Similarly, we need to swap the order of ORDERS_2 and
YELLOW_0, because the author of this formalization again preferred to `unfold'
the original de�nition of an antisymmetric relation. In these cases the relative
distance between these two �les in the list was rather small, so nothing was
broken by this tiny disorder. However, trying to use the same approach to solve
another de�nition-related error would require moving RELSET_1 before TARSKI in
the imports directive and this change would have worse consequences. Namely,
the Analyzer module reports an unknown functor, because the order of nota-
tions was changed at the same time, and now the .: function application symbol
would not generate proper type information (a rede�nition of the form redefine

func R .: A -> Subset of Y; gets overloaded and then unavailable):

3 MML ver. 5.41.1289 distributed with the compatible Mizar system ver. 8.1.06, http:
//mizar.uwb.edu.pl/system/#download



thus f.(x "/\" y) = f.inf {x,y} by YELLOW_0:40

.= inf (f.:{x,y}) by A3,A2

::> *103

.= inf {f.x,f.y} by A1,FUNCT_1:60

.= f.x "/\" f.y by YELLOW_0:40;

::> 103: Unknown functor

So a better solution for this kind of situation is to �x the proof which causes
the proof checker to complain and make use of a better suited rede�nition. In
this case, it is indeed a better and shorter proof:

theorem Th1:

for X, Y being set, D being Subset of [:X,Y:] holds D c= [:proj1 D, proj2 D:]

proof

let X, Y be set, D be Subset of [:X,Y:];

let x be Element of X, y be Element of Y;

assume

A1: [x,y] in D;

x in proj1 D & y in proj2 D by A1,XTUPLE_0:def 12,def 13;

hence thesis by ZFMISC_1:def 2;

end;

instead of the original (here commented out with the error mark *52 indi-
cating a wrong de�nition order):

:: theorem Th1:

:: for X, Y being set, D being Subset of [:X,Y:] holds D c= [:proj1 D, proj2 D:]

:: proof

:: let X, Y be set, D be Subset of [:X,Y:];

:: let q be object;

:: assume

:: ::> *52

:: A1: q in D;

:: then consider x, y being object such that

:: x in X and

:: y in Y and

:: A2: q = [x,y] by ZFMISC_1:def 2;

:: x in proj1 D & y in proj2 D by A1,A2,XTUPLE_0:def 12,def 13;

:: hence thesis by A2,ZFMISC_1:def 2;

:: end;

::> 52: Invalid assumption

The article YELLOW_9 [20] with a new automatically generated environment
contains a few analogous errors, but can also be used to illustrate a more inter-
esting kind of error which can happen when we merge importing directives and
set a common ordering for all of them. In this case we have a space which is
both topological, but also relational. The meaning of the attribute `discrete' is
di�erent from the original and so we get:



registration

cluster strict complete 1-element for TopLattice;

existence

proof

take the strict reflexive 1-element discrete finite TopRelStr;

::> *136

thus thesis;

end;

end;

::> 136: Non registered cluster

as well as the following syntactically correct statement, but about a di�erent
notion of `discrete', so the �nal proof step is not accepted by the Checker:

registration

let R be RelStr;

cluster correct discrete strict for TopAugmentation of R;

existence

proof reconsider BB = bool the carrier of R

as Subset-Family of R;

set T = TopRelStr(#the carrier of R, the InternalRel of R,

BB#);

the RelStr of R = the RelStr of T;

then reconsider T as TopAugmentation of R by Def4;

take T;

T is discrete TopStruct by TDLAT_3:def 1;

hence thesis;

::> *4

end;

end;

::> 4: This inference is not accepted

The solution, of course, is to put TD_LAT after ORDERS_3 in the imports

in order to re�ect the author's original order of notations and so instead of
importing the notion for relational structures:

definition

let IT be RelStr;

attr IT is discrete means

:: ORDERS_3:def 1

the InternalRel of IT = id (the carrier of IT);

end;

force the system to use the version de�ned in topological terms for arbitrary
topological structures:

definition



let IT be TopStruct;

attr IT is discrete means

:: TDLAT_3:def 1

the topology of IT = bool the carrier of IT;

attr IT is anti-discrete means

end;

Fortunately, the reordering of TD_LAT and ORDERS_3 does not introduce other
troublesome imports.

4 Concluding Remarks

The experimental versions of the Mizar Accommodator (accom and makeenv)
binaries precompiled for the main distribution platforms (Linux, Windows and
MacOSX/Darwin), the adjusted sortenv.pl environment sorting script and rel-
evant example Mizar articles can be found at the Mizar website: http://mizar.
uwb.edu.pl/~softadm/imports/. Apart from the implementation related to
adding a new importing directive, in order to accommodate successfully all the
articles from the current MML some limits �xed in the current systems had to
be increased, e.g. the MaxAttrPattNbr restricting the number of permittable
attribute patterns. The new word imports should also be added to the list of
reserved words of the language contained in the library �le mizar.dct.

The new mechanism is inevitably going to produce some performance issues
from time to time when various automation mechanisms would be overused
indirectly by the users. It is, however, expected that the new mechanism could
signi�cantly help the users, especially the less experienced ones. And when their
work is submitted to the MML, the best optimized environment could be restored
by the Library Committee and preserved in the library.

Finally, it is worthwile to consider developing even more high-level environ-
ment importing directives. They can resemble current requirements by using
a �xed name for a combination of carefully selected imports that enable jump
start developments in speci�c theories, like the aforementioned continuous lat-
tices theory, for instance.

Acknowledgement

The processing and analysis of the Mizar library has been performed using the
infrastructure of the University of Bialystok High Performance Computing Cen-
ter.

References

1. J. Harrison, HOL Light tutorial.
URL http://www.cl.cam.ac.uk/~jrh13/hol-light/tutorial.pdf



2. Y. Bertot, P. Castéran, Interactive Theorem Proving and Program Development -
Coq'Art: The Calculus of Inductive Constructions, Texts in Theoretical Computer
Science. An EATCS Series, Springer, 2004. doi:10.1007/978-3-662-07964-5.
URL http://dx.doi.org/10.1007/978-3-662-07964-5

3. T. Nipkow, L. C. Paulson, M. Wenzel, Isabelle/HOL: a proof assistant for higher-
order logic, Vol. 2283, Springer Science & Business Media, 2002.

4. A. Grabowski, A. Korniªowicz, A. Naumowicz, Four decades of Mizar, Journal of
Automated Reasoning 55 (3) (2015) 191�198.

5. G. Bancerek, C. Byli«ski, A. Grabowski, A. Korniªowicz, R. Matuszewski, A. Nau-
mowicz, K. P¡k, J. Urban, Mizar: State-of-the-art and beyond, in: Kerber et al.
[21], pp. 261�279.

6. J. Alama, mizar-items: Exploring �ne-grained dependencies in the Mizar Mathe-
matical Library, in: J. H. Davenport, W. M. Farmer, J. Urban, F. Rabe (Eds.),
Intelligent Computer Mathematics - 18th Symposium, Calculemus 2011, and 10th
International Conference, MKM 2011, Bertinoro, Italy, July 18-23, 2011. Proceed-
ings, Vol. 6824 of Lecture Notes in Computer Science, Springer, 2011, pp. 276�277.

7. A. Grabowski, A. Kornilowicz, A. Naumowicz, Mizar in a nutshell, Journal of
Formalized Reasoning 3 (2) (2010) 153�245.
URL http://jfr.unibo.it/article/view/1980

8. A. Naumowicz, Automating Boolean set operations in Mizar proof checking with
the aid of an external SAT solver, Journal of Automated Reasoning 55 (3) (2015)
285�294.

9. A. Naumowicz, Interfacing external CA systems for Gröbner bases computation
in Mizar proof checking, International Journal of Computer Mathematics 87 (1)
(2010) 1�11.

10. C. Byli«ski, Cartesian categories, Formalized Mathematics 3 (2) (1992) 161�169.
URL http://fm.mizar.org/1992-3/pdf3-2/cat_4.pdf

11. Z. Trybulec, H. �wi¦czkowska, Boolean properties of sets, Formalized Mathematics
1 (1) (1990) 17�23.
URL http://fm.mizar.org/1990-1/pdf1-1/boole.pdf

12. A. Naumowicz, Enhanced processing of adjectives in Mizar, Studies in Logic, Gram-
mar and Rhetoric 18 (31) (2009) 89��101.

13. A. Korniªowicz, On rewriting rules in Mizar, Journal of Automated Reasoning
50 (2) (2013) 203�210.

14. A. Grabowski, A. Kornilowicz, C. Schwarzweller, Equality in computer proof-
assistants, in: 2015 Federated Conference on Computer Science and Information
Systems, FedCSIS 2015, Lódz, Poland, September 13-16, 2015, 2015, pp. 45�54.
doi:10.15439/2015F229.
URL http://dx.doi.org/10.15439/2015F229

15. A. Korniªowicz, De�nitional expansions in Mizar, Journal of Automated Reasoning
55 (3) (2015) 257�268.

16. A. Naumowicz, Tools for MML environment analysis, in: Kerber et al. [21], pp.
348�352.

17. G. Bancerek, P. Rudnicki, A compendium of continuous lattices in MIZAR, J.
Autom. Reasoning 29 (3-4) (2002) 189�224. doi:10.1023/A:1021966832558.
URL http://dx.doi.org/10.1023/A:1021966832558

18. A. Korniªowicz, Cartesian products of relations and relational structures, Formal-
ized Mathematics 6 (1) (1997) 145�152.
URL http://fm.mizar.org/1997-6/pdf6-1/yellow_3.pdf



19. A. Trybulec, Moore-Smith convergence, Formalized Mathematics 6 (2) (1997) 213�
225.
URL http://fm.mizar.org/1997-6/pdf6-2/yellow_6.pdf

20. G. Bancerek, Bases and re�nements of topologies, Formalized Mathematics 7 (1)
(1998) 35�43.
URL http://fm.mizar.org/1998-7/pdf7-1/yellow_9.pdf

21. M. Kerber, J. Carette, C. Kaliszyk, F. Rabe, V. Sorge (Eds.), Intelligent Com-
puter Mathematics - International Conference, CICM 2015, Washington, DC, USA,
July 13-17, 2015, Proceedings, Vol. 9150 of Lecture Notes in Computer Science,
Springer, 2015.


