let T be TuringStr ; :: thesis: for t being Tape of T
for s, n1, n2 being Element of NAT st t storeData <*s,n1,n2*> holds
( t . s = 0 & t . ((s + n1) + 2) = 0 & t . (((s + n1) + n2) + 4) = 0 & ( for i being Integer st s < i & i < (s + n1) + 2 holds
t . i = 1 ) & ( for i being Integer st (s + n1) + 2 < i & i < ((s + n1) + n2) + 4 holds
t . i = 1 ) )

let t be Tape of T; :: thesis: for s, n1, n2 being Element of NAT st t storeData <*s,n1,n2*> holds
( t . s = 0 & t . ((s + n1) + 2) = 0 & t . (((s + n1) + n2) + 4) = 0 & ( for i being Integer st s < i & i < (s + n1) + 2 holds
t . i = 1 ) & ( for i being Integer st (s + n1) + 2 < i & i < ((s + n1) + n2) + 4 holds
t . i = 1 ) )

let s, n1, n2 be Element of NAT ; :: thesis: ( t storeData <*s,n1,n2*> implies ( t . s = 0 & t . ((s + n1) + 2) = 0 & t . (((s + n1) + n2) + 4) = 0 & ( for i being Integer st s < i & i < (s + n1) + 2 holds
t . i = 1 ) & ( for i being Integer st (s + n1) + 2 < i & i < ((s + n1) + n2) + 4 holds
t . i = 1 ) ) )

assume t storeData <*s,n1,n2*> ; :: thesis: ( t . s = 0 & t . ((s + n1) + 2) = 0 & t . (((s + n1) + n2) + 4) = 0 & ( for i being Integer st s < i & i < (s + n1) + 2 holds
t . i = 1 ) & ( for i being Integer st (s + n1) + 2 < i & i < ((s + n1) + n2) + 4 holds
t . i = 1 ) )

then A1: ( t is_1_between s,(s + n1) + 2 & t is_1_between (s + n1) + 2,((s + n1) + n2) + 4 ) by Th18;
hence ( t . s = 0 & t . ((s + n1) + 2) = 0 & t . (((s + n1) + n2) + 4) = 0 ) ; :: thesis: ( ( for i being Integer st s < i & i < (s + n1) + 2 holds
t . i = 1 ) & ( for i being Integer st (s + n1) + 2 < i & i < ((s + n1) + n2) + 4 holds
t . i = 1 ) )

thus ( ( for i being Integer st s < i & i < (s + n1) + 2 holds
t . i = 1 ) & ( for i being Integer st (s + n1) + 2 < i & i < ((s + n1) + n2) + 4 holds
t . i = 1 ) ) by A1; :: thesis: verum