let a be Real; :: thesis: for M being non empty Reflexive symmetric bounded MetrStruct st a >= diameter ([#] M) holds
dist_toler (M,a) = nabla the carrier of M

let M be non empty Reflexive symmetric bounded MetrStruct ; :: thesis: ( a >= diameter ([#] M) implies dist_toler (M,a) = nabla the carrier of M )
assume A1: a >= diameter ([#] M) ; :: thesis: dist_toler (M,a) = nabla the carrier of M
now :: thesis: for z being object st z in nabla the carrier of M holds
z in dist_toler (M,a)
let z be object ; :: thesis: ( z in nabla the carrier of M implies z in dist_toler (M,a) )
assume z in nabla the carrier of M ; :: thesis: z in dist_toler (M,a)
then consider x, y being object such that
A2: ( x in the carrier of M & y in the carrier of M ) and
A3: z = [x,y] by ZFMISC_1:def 2;
reconsider x1 = x, y1 = y as Element of M by A2;
dist (x1,y1) <= diameter ([#] M) by TBSP_1:def 8;
then dist (x1,y1) <= a by ;
then x1,y1 are_in_tolerance_wrt a ;
hence z in dist_toler (M,a) by ; :: thesis: verum
end;
then nabla the carrier of M c= dist_toler (M,a) ;
hence dist_toler (M,a) = nabla the carrier of M by XBOOLE_0:def 10; :: thesis: verum