let P1, P2 be Instruction-Sequence of SCMPDS; :: thesis: for s1, s2 being 0 -started State of SCMPDS
for I being Program of st I is_closed_on s1,P1 & I is_halting_on s1,P1 & stop I c= P1 & stop I c= P2 & ex k being Nat st Comput (P1,s1,k) = s2 holds
Result (P1,s1) = Result (P2,s2)

let s1, s2 be 0 -started State of SCMPDS; :: thesis: for I being Program of st I is_closed_on s1,P1 & I is_halting_on s1,P1 & stop I c= P1 & stop I c= P2 & ex k being Nat st Comput (P1,s1,k) = s2 holds
Result (P1,s1) = Result (P2,s2)

let I be Program of ; :: thesis: ( I is_closed_on s1,P1 & I is_halting_on s1,P1 & stop I c= P1 & stop I c= P2 & ex k being Nat st Comput (P1,s1,k) = s2 implies Result (P1,s1) = Result (P2,s2) )
set pI = stop I;
assume A1: I is_closed_on s1,P1 ; :: thesis: ( not I is_halting_on s1,P1 or not stop I c= P1 or not stop I c= P2 or for k being Nat holds not Comput (P1,s1,k) = s2 or Result (P1,s1) = Result (P2,s2) )
assume A2: I is_halting_on s1,P1 ; :: thesis: ( not stop I c= P1 or not stop I c= P2 or for k being Nat holds not Comput (P1,s1,k) = s2 or Result (P1,s1) = Result (P2,s2) )
assume stop I c= P1 ; :: thesis: ( not stop I c= P2 or for k being Nat holds not Comput (P1,s1,k) = s2 or Result (P1,s1) = Result (P2,s2) )
then A3: P1 = P1 +* (stop I) by FUNCT_4:98;
assume stop I c= P2 ; :: thesis: ( for k being Nat holds not Comput (P1,s1,k) = s2 or Result (P1,s1) = Result (P2,s2) )
then A4: P2 = P2 +* (stop I) by FUNCT_4:98;
A5: s1 = Initialize s1 by MEMSTR_0:44;
then A6: P1 halts_on s1 by ;
then consider n being Nat such that
A7: CurInstr (P1,(Comput (P1,s1,n))) = halt SCMPDS ;
A8: s2 = Initialize s2 by MEMSTR_0:44;
given k being Nat such that A9: Comput (P1,s1,k) = s2 ; :: thesis: Result (P1,s1) = Result (P2,s2)
set s3 = Comput (P1,s1,k);
set P3 = P1;
A10: IC in dom (Comput (P1,s1,k)) by MEMSTR_0:2;
IC (Comput (P1,s1,k)) = 0 by ;
then Start-At (0,SCMPDS) c= Comput (P1,s1,k) by ;
then A11: Comput (P1,s1,k) = Initialize (Comput (P1,s1,k)) by FUNCT_4:98;
A12: now :: thesis: for n being Nat holds IC (Comput (P1,(Comput (P1,s1,k)),n)) in dom (stop I)
let n be Nat; :: thesis: IC (Comput (P1,(Comput (P1,s1,k)),n)) in dom (stop I)
IC (Comput (P1,(Comput (P1,s1,k)),n)) = IC (Comput (P1,s1,(k + n))) by EXTPRO_1:4;
hence IC (Comput (P1,(Comput (P1,s1,k)),n)) in dom (stop I) by ; :: thesis: verum
end;
CurInstr (P1,(Comput (P1,(Comput (P1,s1,k)),n))) = CurInstr (P1,(Comput (P1,s1,(k + n)))) by EXTPRO_1:4
.= CurInstr (P1,(Comput (P1,s1,n))) by ;
then P1 halts_on Comput (P1,s1,k) by ;
then A13: I is_halting_on Comput (P1,s1,k),P1 by ;
A14: DataPart (Comput (P1,s1,k)) = DataPart s2 by A9;
consider k being Nat such that
A15: CurInstr (P1,(Comput (P1,s1,k))) = halt SCMPDS by A6;
A16: P1 . (IC (Comput (P1,s1,k))) = halt SCMPDS by ;
I is_closed_on Comput (P1,s1,k),P1 by ;
then Result (P1,(Comput (P1,s1,k))) = Result (P2,s2) by A8, A14, A11, A13, Th9, A4, A3;
hence Result (P1,s1) = Result (P2,s2) by ; :: thesis: verum