for q being NAT -defined the InstructionsF of SCM+FSA -valued finite non halt-free Function
for p being b1 -autonomic FinPartState of SCM+FSA st DataPart p <> {} holds
IC in dom p
proof
let q be NAT -defined the InstructionsF of SCM+FSA -valued finite non halt-free Function; :: thesis: for p being q -autonomic FinPartState of SCM+FSA st DataPart p <> {} holds
IC in dom p

let p be q -autonomic FinPartState of SCM+FSA; :: thesis: ( DataPart p <> {} implies IC in dom p )
assume DataPart p <> {} ; :: thesis:
then A1: dom () <> {} ;
assume not IC in dom p ; :: thesis: contradiction
then A2: dom p misses {()} by ZFMISC_1:50;
not p is q -autonomic
proof
set il = the Element of NAT \ (dom q);
set d2 = the Element of Int-Locations \ (dom p);
set d1 = the Element of dom ();
A3: dom () c= Data-Locations by RELAT_1:58;
not NAT c= dom q ;
then A4: NAT \ (dom q) <> {} by XBOOLE_1:37;
then reconsider il = the Element of NAT \ (dom q) as Element of NAT by XBOOLE_0:def 5;
not Int-Locations c= dom p ;
then A5: Int-Locations \ (dom p) <> {} by XBOOLE_1:37;
then the Element of Int-Locations \ (dom p) in Int-Locations by XBOOLE_0:def 5;
then reconsider d2 = the Element of Int-Locations \ (dom p) as Int-Location by AMI_2:def 16;
A6: the Element of dom () in dom () by A1;
DataPart p c= p by MEMSTR_0:12;
then A7: dom () c= dom p by RELAT_1:11;
dom () c= the carrier of SCM+FSA by RELAT_1:def 18;
then reconsider d1 = the Element of dom () as Element of SCM+FSA by A6;
per cases by ;
suppose d1 in Int-Locations ; :: thesis: not p is q -autonomic
then reconsider d1 = d1 as Int-Location by AMI_2:def 16;
set p1 = p +* ((d2 .--> 0) +* (Start-At (il,SCM+FSA)));
set p2 = p +* ((d2 .--> 1) +* (Start-At (il,SCM+FSA)));
set q1 = q +* (il .--> (d1 := d2));
set q2 = q +* (il .--> (d1 := d2));
consider s1 being State of SCM+FSA such that
A8: p +* ((d2 .--> 0) +* (Start-At (il,SCM+FSA))) c= s1 by PBOOLE:141;
consider S1 being Instruction-Sequence of SCM+FSA such that
A9: q +* (il .--> (d1 := d2)) c= S1 by PBOOLE:145;
not d2 in dom p by ;
then A10: dom p misses {d2} by ZFMISC_1:50;
consider s2 being State of SCM+FSA such that
A11: p +* ((d2 .--> 1) +* (Start-At (il,SCM+FSA))) c= s2 by PBOOLE:141;
consider S2 being Instruction-Sequence of SCM+FSA such that
A12: q +* (il .--> (d1 := d2)) c= S2 by PBOOLE:145;
take P = S1; :: according to EXTPRO_1:def 10 :: thesis: ex b1 being set st
( q c= P & q c= b1 & ex b2, b3 being set st
( p c= b2 & p c= b3 & not for b4 being set holds (Comput (P,b2,b4)) | (dom p) = (Comput (b1,b3,b4)) | (dom p) ) )

take Q = S2; :: thesis: ( q c= P & q c= Q & ex b1, b2 being set st
( p c= b1 & p c= b2 & not for b3 being set holds (Comput (P,b1,b3)) | (dom p) = (Comput (Q,b2,b3)) | (dom p) ) )

A14: not il in dom q by ;
dom ((d2 .--> 0) +* (Start-At (il,SCM+FSA))) = (dom (d2 .--> 0)) \/ (dom (Start-At (il,SCM+FSA))) by FUNCT_4:def 1
.= (dom (d2 .--> 0)) \/ {()}
.= {d2} \/ {()} ;
then (dom p) /\ (dom ((d2 .--> 0) +* (Start-At (il,SCM+FSA)))) = ((dom p) /\ {d2}) \/ ((dom p) /\ {()}) by XBOOLE_1:23
.= ((dom p) /\ {d2}) \/ {} by
.= {} by ;
then dom p misses dom ((d2 .--> 0) +* (Start-At (il,SCM+FSA))) by XBOOLE_0:def 7;
then p c= p +* ((d2 .--> 0) +* (Start-At (il,SCM+FSA))) by FUNCT_4:32;
then A15: p c= s1 by ;
dom q misses dom (il .--> (d1 := d2)) by ;
then q c= q +* (il .--> (d1 := d2)) by FUNCT_4:32;
hence q c= P by ; :: thesis: ( q c= Q & ex b1, b2 being set st
( p c= b1 & p c= b2 & not for b3 being set holds (Comput (P,b1,b3)) | (dom p) = (Comput (Q,b2,b3)) | (dom p) ) )

dom ((d2 .--> 1) +* (Start-At (il,SCM+FSA))) = (dom (d2 .--> 1)) \/ (dom (Start-At (il,SCM+FSA))) by FUNCT_4:def 1
.= (dom (d2 .--> 1)) \/ {()}
.= {d2} \/ {()} ;
then (dom p) /\ (dom ((d2 .--> 1) +* (Start-At (il,SCM+FSA)))) = ((dom p) /\ {d2}) \/ ((dom p) /\ {()}) by XBOOLE_1:23
.= ((dom p) /\ {d2}) \/ {} by
.= {} by ;
then dom p misses dom ((d2 .--> 1) +* (Start-At (il,SCM+FSA))) by XBOOLE_0:def 7;
then p c= p +* ((d2 .--> 1) +* (Start-At (il,SCM+FSA))) by FUNCT_4:32;
then A16: p c= s2 by ;
dom q misses dom (il .--> (d1 := d2)) by ;
then q c= q +* (il .--> (d1 := d2)) by FUNCT_4:32;
hence q c= Q by ; :: thesis: ex b1, b2 being set st
( p c= b1 & p c= b2 & not for b3 being set holds (Comput (P,b1,b3)) | (dom p) = (Comput (Q,b2,b3)) | (dom p) )

take s1 ; :: thesis: ex b1 being set st
( p c= s1 & p c= b1 & not for b2 being set holds (Comput (P,s1,b2)) | (dom p) = (Comput (Q,b1,b2)) | (dom p) )

take s2 ; :: thesis: ( p c= s1 & p c= s2 & not for b1 being set holds (Comput (P,s1,b1)) | (dom p) = (Comput (Q,s2,b1)) | (dom p) )
thus p c= s1 by A15; :: thesis: ( p c= s2 & not for b1 being set holds (Comput (P,s1,b1)) | (dom p) = (Comput (Q,s2,b1)) | (dom p) )
thus p c= s2 by A16; :: thesis: not for b1 being set holds (Comput (P,s1,b1)) | (dom p) = (Comput (Q,s2,b1)) | (dom p)
take 1 ; :: thesis: not (Comput (P,s1,1)) | (dom p) = (Comput (Q,s2,1)) | (dom p)
A17: dom ((d2 .--> 1) +* (Start-At (il,SCM+FSA))) = (dom (d2 .--> 1)) \/ (dom (Start-At (il,SCM+FSA))) by FUNCT_4:def 1;
A18: dom p c= the carrier of SCM+FSA by RELAT_1:def 18;
A19: dom (Comput (S2,s2,1)) = the carrier of SCM+FSA by PARTFUN1:def 2;
A20: dom ((Comput (S2,s2,1)) | (dom p)) = dom p by ;
A21: dom ((d2 .--> 0) +* (Start-At (il,SCM+FSA))) = (dom (d2 .--> 0)) \/ (dom (Start-At (il,SCM+FSA))) by FUNCT_4:def 1;
A22: dom (p +* ((d2 .--> 0) +* (Start-At (il,SCM+FSA)))) = (dom p) \/ (dom ((d2 .--> 0) +* (Start-At (il,SCM+FSA)))) by FUNCT_4:def 1;
A24: IC in dom (Start-At (il,SCM+FSA)) by TARSKI:def 1;
then A25: IC in dom ((d2 .--> 0) +* (Start-At (il,SCM+FSA))) by ;
then IC in dom (p +* ((d2 .--> 0) +* (Start-At (il,SCM+FSA)))) by ;
then A26: IC s1 = (p +* ((d2 .--> 0) +* (Start-At (il,SCM+FSA)))) . () by
.= ((d2 .--> 0) +* (Start-At (il,SCM+FSA))) . () by
.= (Start-At (il,SCM+FSA)) . () by
.= il by FUNCOP_1:72 ;
d2 <> IC by SCMFSA_2:56;
then A27: not d2 in dom (Start-At (il,SCM+FSA)) by TARSKI:def 1;
d2 in dom (d2 .--> 0) by TARSKI:def 1;
then A28: d2 in dom ((d2 .--> 0) +* (Start-At (il,SCM+FSA))) by ;
then d2 in dom (p +* ((d2 .--> 0) +* (Start-At (il,SCM+FSA)))) by ;
then A29: s1 . d2 = (p +* ((d2 .--> 0) +* (Start-At (il,SCM+FSA)))) . d2 by
.= ((d2 .--> 0) +* (Start-At (il,SCM+FSA))) . d2 by
.= (d2 .--> 0) . d2 by
.= 0 by FUNCOP_1:72 ;
A30: il in dom (il .--> (d1 := d2)) by TARSKI:def 1;
dom (q +* (il .--> (d1 := d2))) = (dom q) \/ (dom (il .--> (d1 := d2))) by FUNCT_4:def 1;
then il in dom (q +* (il .--> (d1 := d2))) by ;
then A31: S1 . il = (q +* (il .--> (d1 := d2))) . il by
.= (il .--> (d1 := d2)) . il by
.= d1 := d2 by FUNCOP_1:72 ;
A32: dom p c= the carrier of SCM+FSA by RELAT_1:def 18;
A33: dom (Comput (S1,s1,1)) = the carrier of SCM+FSA by PARTFUN1:def 2;
A34: dom ((Comput (S1,s1,1)) | (dom p)) = dom p by ;
A35: dom (p +* ((d2 .--> 1) +* (Start-At (il,SCM+FSA)))) = (dom p) \/ (dom ((d2 .--> 1) +* (Start-At (il,SCM+FSA)))) by FUNCT_4:def 1;
A36: dom (q +* (il .--> (d1 := d2))) = (dom q) \/ (dom (il .--> (d1 := d2))) by FUNCT_4:def 1;
A38: IC in dom (Start-At (il,SCM+FSA)) by TARSKI:def 1;
then A39: IC in dom ((d2 .--> 1) +* (Start-At (il,SCM+FSA))) by ;
then IC in dom (p +* ((d2 .--> 1) +* (Start-At (il,SCM+FSA)))) by ;
then A40: IC s2 = (p +* ((d2 .--> 1) +* (Start-At (il,SCM+FSA)))) . () by
.= ((d2 .--> 1) +* (Start-At (il,SCM+FSA))) . () by
.= (Start-At (il,SCM+FSA)) . () by
.= il by FUNCOP_1:72 ;
d2 <> IC by SCMFSA_2:56;
then A41: not d2 in dom (Start-At (il,SCM+FSA)) by TARSKI:def 1;
d2 in dom (d2 .--> 1) by TARSKI:def 1;
then A42: d2 in dom ((d2 .--> 1) +* (Start-At (il,SCM+FSA))) by ;
then d2 in dom (p +* ((d2 .--> 1) +* (Start-At (il,SCM+FSA)))) by ;
then A43: s2 . d2 = (p +* ((d2 .--> 1) +* (Start-At (il,SCM+FSA)))) . d2 by
.= ((d2 .--> 1) +* (Start-At (il,SCM+FSA))) . d2 by
.= (d2 .--> 1) . d2 by
.= 1 by FUNCOP_1:72 ;
A44: il in dom (il .--> (d1 := d2)) by TARSKI:def 1;
il in dom (q +* (il .--> (d1 := d2))) by ;
then A45: S2 . il = (q +* (il .--> (d1 := d2))) . il by
.= (il .--> (d1 := d2)) . il by
.= d1 := d2 by FUNCOP_1:72 ;
A46: S2 /. (IC s2) = S2 . (IC s2) by PBOOLE:143;
A47: (Comput (S2,s2,(0 + 1))) . d1 = (Following (S2,(Comput (S2,s2,0)))) . d1 by EXTPRO_1:3
.= (Following (S2,s2)) . d1
.= 1 by ;
A48: S1 /. (IC s1) = S1 . (IC s1) by PBOOLE:143;
(Comput (S1,s1,(0 + 1))) . d1 = (Following (S1,(Comput (S1,s1,0)))) . d1 by EXTPRO_1:3
.= (Following (S1,s1)) . d1
.= 0 by ;
then ((Comput (S1,s1,1)) | (dom p)) . d1 = 0 by ;
hence (Comput (P,s1,1)) | (dom p) <> (Comput (Q,s2,1)) | (dom p) by ; :: thesis: verum
end;
suppose d1 in FinSeq-Locations ; :: thesis: not p is q -autonomic
then reconsider d1 = d1 as FinSeq-Location by SCMFSA_2:def 5;
set p1 = p +* ((d2 .--> 0) +* (Start-At (il,SCM+FSA)));
set p2 = p +* ((d2 .--> 1) +* (Start-At (il,SCM+FSA)));
set q1 = q +* (il .--> (d1 :=<0,...,0> d2));
set q2 = q +* (il .--> (d1 :=<0,...,0> d2));
consider s1 being State of SCM+FSA such that
A49: p +* ((d2 .--> 0) +* (Start-At (il,SCM+FSA))) c= s1 by PBOOLE:141;
consider S1 being Instruction-Sequence of SCM+FSA such that
A50: q +* (il .--> (d1 :=<0,...,0> d2)) c= S1 by PBOOLE:145;
A51: dom ((d2 .--> 0) +* (Start-At (il,SCM+FSA))) = (dom (d2 .--> 0)) \/ (dom (Start-At (il,SCM+FSA))) by FUNCT_4:def 1;
consider k being Nat such that
A52: k = |.(s1 . d2).| and
A53: (Exec ((d1 :=<0,...,0> d2),s1)) . d1 = k |-> 0 by SCMFSA_2:75;
A54: dom (p +* ((d2 .--> 0) +* (Start-At (il,SCM+FSA)))) = (dom p) \/ (dom ((d2 .--> 0) +* (Start-At (il,SCM+FSA)))) by FUNCT_4:def 1;
A55: dom (q +* (il .--> (d1 :=<0,...,0> d2))) = (dom q) \/ (dom (il .--> (d1 :=<0,...,0> d2))) by FUNCT_4:def 1;
A57: IC in dom (Start-At (il,SCM+FSA)) by TARSKI:def 1;
then A58: IC in dom ((d2 .--> 0) +* (Start-At (il,SCM+FSA))) by ;
then IC in dom (p +* ((d2 .--> 0) +* (Start-At (il,SCM+FSA)))) by ;
then A59: IC s1 = (p +* ((d2 .--> 0) +* (Start-At (il,SCM+FSA)))) . () by
.= ((d2 .--> 0) +* (Start-At (il,SCM+FSA))) . () by
.= (Start-At (il,SCM+FSA)) . () by
.= il by FUNCOP_1:72 ;
consider s2 being State of SCM+FSA such that
A60: p +* ((d2 .--> 1) +* (Start-At (il,SCM+FSA))) c= s2 by PBOOLE:141;
consider S2 being Instruction-Sequence of SCM+FSA such that
A61: q +* (il .--> (d1 :=<0,...,0> d2)) c= S2 by PBOOLE:145;
d2 <> IC by SCMFSA_2:56;
then A62: not d2 in dom (Start-At (il,SCM+FSA)) by TARSKI:def 1;
d2 in dom (d2 .--> 0) by TARSKI:def 1;
then A63: d2 in dom ((d2 .--> 0) +* (Start-At (il,SCM+FSA))) by ;
then d2 in dom (p +* ((d2 .--> 0) +* (Start-At (il,SCM+FSA)))) by ;
then s1 . d2 = (p +* ((d2 .--> 0) +* (Start-At (il,SCM+FSA)))) . d2 by
.= ((d2 .--> 0) +* (Start-At (il,SCM+FSA))) . d2 by
.= (d2 .--> 0) . d2 by
.= 0 by FUNCOP_1:72 ;
then A64: k |-> 0 = 0 |-> 0 by
.= {} by FINSEQ_2:58 ;
not d2 in dom p by ;
then A65: dom p misses {d2} by ZFMISC_1:50;
A67: il in dom (il .--> (d1 :=<0,...,0> d2)) by ZFMISC_1:31;
then il in dom (q +* (il .--> (d1 :=<0,...,0> d2))) by ;
then A68: S1 . il = (q +* (il .--> (d1 :=<0,...,0> d2))) . il by
.= (il .--> (d1 :=<0,...,0> d2)) . il by
.= d1 :=<0,...,0> d2 by FUNCOP_1:72 ;
A69: dom p c= the carrier of SCM+FSA by RELAT_1:def 18;
A70: dom (Comput (S1,s1,1)) = the carrier of SCM+FSA by PARTFUN1:def 2;
A71: dom ((Comput (S1,s1,1)) | (dom p)) = dom p by ;
consider k being Nat such that
A72: k = |.(s2 . d2).| and
A73: (Exec ((d1 :=<0,...,0> d2),s2)) . d1 = k |-> 0 by SCMFSA_2:75;
A74: dom (p +* ((d2 .--> 1) +* (Start-At (il,SCM+FSA)))) = (dom p) \/ (dom ((d2 .--> 1) +* (Start-At (il,SCM+FSA)))) by FUNCT_4:def 1;
take P = S1; :: according to EXTPRO_1:def 10 :: thesis: ex b1 being set st
( q c= P & q c= b1 & ex b2, b3 being set st
( p c= b2 & p c= b3 & not for b4 being set holds (Comput (P,b2,b4)) | (dom p) = (Comput (b1,b3,b4)) | (dom p) ) )

take Q = S2; :: thesis: ( q c= P & q c= Q & ex b1, b2 being set st
( p c= b1 & p c= b2 & not for b3 being set holds (Comput (P,b1,b3)) | (dom p) = (Comput (Q,b2,b3)) | (dom p) ) )

A76: not il in dom q by ;
A77: dom (q +* (il .--> (d1 :=<0,...,0> d2))) = (dom q) \/ (dom (il .--> (d1 :=<0,...,0> d2))) by FUNCT_4:def 1;
dom ((d2 .--> 0) +* (Start-At (il,SCM+FSA))) = (dom (d2 .--> 0)) \/ (dom (Start-At (il,SCM+FSA))) by FUNCT_4:def 1
.= (dom (d2 .--> 0)) \/ {()}
.= {d2} \/ {()} ;
then (dom p) /\ (dom ((d2 .--> 0) +* (Start-At (il,SCM+FSA)))) = ((dom p) /\ {d2}) \/ ((dom p) /\ {()}) by XBOOLE_1:23
.= ((dom p) /\ {d2}) \/ {} by
.= {} by ;
then dom p misses dom ((d2 .--> 0) +* (Start-At (il,SCM+FSA))) by XBOOLE_0:def 7;
then p c= p +* ((d2 .--> 0) +* (Start-At (il,SCM+FSA))) by FUNCT_4:32;
then A78: p c= s1 by ;
dom q misses dom (il .--> (d1 :=<0,...,0> d2)) by ;
then q c= q +* (il .--> (d1 :=<0,...,0> d2)) by FUNCT_4:32;
hence q c= P by ; :: thesis: ( q c= Q & ex b1, b2 being set st
( p c= b1 & p c= b2 & not for b3 being set holds (Comput (P,b1,b3)) | (dom p) = (Comput (Q,b2,b3)) | (dom p) ) )

dom ((d2 .--> 1) +* (Start-At (il,SCM+FSA))) = (dom (d2 .--> 1)) \/ (dom (Start-At (il,SCM+FSA))) by FUNCT_4:def 1
.= (dom (d2 .--> 1)) \/ {()}
.= {d2} \/ {()} ;
then (dom p) /\ (dom ((d2 .--> 1) +* (Start-At (il,SCM+FSA)))) = ((dom p) /\ {d2}) \/ ((dom p) /\ {()}) by XBOOLE_1:23
.= ((dom p) /\ {d2}) \/ {} by
.= {} by ;
then dom p misses dom ((d2 .--> 1) +* (Start-At (il,SCM+FSA))) by XBOOLE_0:def 7;
then p c= p +* ((d2 .--> 1) +* (Start-At (il,SCM+FSA))) by FUNCT_4:32;
then A79: p c= s2 by ;
dom q misses dom (il .--> (d1 :=<0,...,0> d2)) by ;
then q c= q +* (il .--> (d1 :=<0,...,0> d2)) by FUNCT_4:32;
hence q c= Q by ; :: thesis: ex b1, b2 being set st
( p c= b1 & p c= b2 & not for b3 being set holds (Comput (P,b1,b3)) | (dom p) = (Comput (Q,b2,b3)) | (dom p) )

take s1 ; :: thesis: ex b1 being set st
( p c= s1 & p c= b1 & not for b2 being set holds (Comput (P,s1,b2)) | (dom p) = (Comput (Q,b1,b2)) | (dom p) )

take s2 ; :: thesis: ( p c= s1 & p c= s2 & not for b1 being set holds (Comput (P,s1,b1)) | (dom p) = (Comput (Q,s2,b1)) | (dom p) )
thus p c= s1 by A78; :: thesis: ( p c= s2 & not for b1 being set holds (Comput (P,s1,b1)) | (dom p) = (Comput (Q,s2,b1)) | (dom p) )
thus p c= s2 by A79; :: thesis: not for b1 being set holds (Comput (P,s1,b1)) | (dom p) = (Comput (Q,s2,b1)) | (dom p)
take 1 ; :: thesis: not (Comput (P,s1,1)) | (dom p) = (Comput (Q,s2,1)) | (dom p)
A80: dom ((d2 .--> 1) +* (Start-At (il,SCM+FSA))) = (dom (d2 .--> 1)) \/ (dom (Start-At (il,SCM+FSA))) by FUNCT_4:def 1;
A82: IC in dom (Start-At (il,SCM+FSA)) by TARSKI:def 1;
then A83: IC in dom ((d2 .--> 1) +* (Start-At (il,SCM+FSA))) by ;
then IC in dom (p +* ((d2 .--> 1) +* (Start-At (il,SCM+FSA)))) by ;
then A84: IC s2 = (p +* ((d2 .--> 1) +* (Start-At (il,SCM+FSA)))) . () by
.= ((d2 .--> 1) +* (Start-At (il,SCM+FSA))) . () by
.= (Start-At (il,SCM+FSA)) . () by
.= il by FUNCOP_1:72 ;
d2 <> IC by SCMFSA_2:56;
then A85: not d2 in dom (Start-At (il,SCM+FSA)) by TARSKI:def 1;
d2 in dom (d2 .--> 1) by TARSKI:def 1;
then A86: d2 in dom ((d2 .--> 1) +* (Start-At (il,SCM+FSA))) by ;
then d2 in dom (p +* ((d2 .--> 1) +* (Start-At (il,SCM+FSA)))) by ;
then s2 . d2 = (p +* ((d2 .--> 1) +* (Start-At (il,SCM+FSA)))) . d2 by
.= ((d2 .--> 1) +* (Start-At (il,SCM+FSA))) . d2 by
.= (d2 .--> 1) . d2 by
.= 1 by FUNCOP_1:72 ;
then A87: k |-> 0 = 1 |-> 0 by
.= by FINSEQ_2:59 ;
A88: il in dom (il .--> (d1 :=<0,...,0> d2)) by TARSKI:def 1;
then il in dom (q +* (il .--> (d1 :=<0,...,0> d2))) by ;
then A89: S2 . il = (q +* (il .--> (d1 :=<0,...,0> d2))) . il by
.= (il .--> (d1 :=<0,...,0> d2)) . il by
.= d1 :=<0,...,0> d2 by FUNCOP_1:72 ;
A90: (Comput (S2,s2,(0 + 1))) . d1 = (Following (S2,(Comput (S2,s2,0)))) . d1 by EXTPRO_1:3
.= (Following (S2,s2)) . d1
.= by ;
A91: dom p c= the carrier of SCM+FSA by RELAT_1:def 18;
A92: dom (Comput (S2,s2,1)) = the carrier of SCM+FSA by PARTFUN1:def 2;
A93: dom ((Comput (S2,s2,1)) | (dom p)) = dom p by ;
(Comput (S1,s1,(0 + 1))) . d1 = (Following (S1,(Comput (S1,s1,0)))) . d1 by EXTPRO_1:3
.= (Following (S1,s1)) . d1
.= {} by ;
then ((Comput (S1,s1,1)) | (dom p)) . d1 = {} by ;
hence (Comput (P,s1,1)) | (dom p) <> (Comput (Q,s2,1)) | (dom p) by ; :: thesis: verum
end;
end;
end;
hence contradiction ; :: thesis: verum
end;
hence SCM+FSA is IC-recognized by AMISTD_5:3; :: thesis: verum