let q be NAT -defined the InstructionsF of SCM+FSA -valued finite non halt-free Function; :: thesis: for p being non empty q -autonomic FinPartState of SCM+FSA
for s1, s2 being State of SCM+FSA st p c= s1 & p c= s2 holds
for P1, P2 being Instruction-Sequence of SCM+FSA st q c= P1 & q c= P2 holds
for i being Nat
for da being Int-Location
for f being FinSeq-Location st CurInstr (P1,(Comput (P1,s1,i))) = da :=len f & da in dom p holds
len ((Comput (P1,s1,i)) . f) = len ((Comput (P2,s2,i)) . f)

let p be non empty q -autonomic FinPartState of SCM+FSA; :: thesis: for s1, s2 being State of SCM+FSA st p c= s1 & p c= s2 holds
for P1, P2 being Instruction-Sequence of SCM+FSA st q c= P1 & q c= P2 holds
for i being Nat
for da being Int-Location
for f being FinSeq-Location st CurInstr (P1,(Comput (P1,s1,i))) = da :=len f & da in dom p holds
len ((Comput (P1,s1,i)) . f) = len ((Comput (P2,s2,i)) . f)

let s1, s2 be State of SCM+FSA; :: thesis: ( p c= s1 & p c= s2 implies for P1, P2 being Instruction-Sequence of SCM+FSA st q c= P1 & q c= P2 holds
for i being Nat
for da being Int-Location
for f being FinSeq-Location st CurInstr (P1,(Comput (P1,s1,i))) = da :=len f & da in dom p holds
len ((Comput (P1,s1,i)) . f) = len ((Comput (P2,s2,i)) . f) )

assume A1: ( p c= s1 & p c= s2 ) ; :: thesis: for P1, P2 being Instruction-Sequence of SCM+FSA st q c= P1 & q c= P2 holds
for i being Nat
for da being Int-Location
for f being FinSeq-Location st CurInstr (P1,(Comput (P1,s1,i))) = da :=len f & da in dom p holds
len ((Comput (P1,s1,i)) . f) = len ((Comput (P2,s2,i)) . f)

let P1, P2 be Instruction-Sequence of SCM+FSA; :: thesis: ( q c= P1 & q c= P2 implies for i being Nat
for da being Int-Location
for f being FinSeq-Location st CurInstr (P1,(Comput (P1,s1,i))) = da :=len f & da in dom p holds
len ((Comput (P1,s1,i)) . f) = len ((Comput (P2,s2,i)) . f) )

assume A2: ( q c= P1 & q c= P2 ) ; :: thesis: for i being Nat
for da being Int-Location
for f being FinSeq-Location st CurInstr (P1,(Comput (P1,s1,i))) = da :=len f & da in dom p holds
len ((Comput (P1,s1,i)) . f) = len ((Comput (P2,s2,i)) . f)

let i be Nat; :: thesis: for da being Int-Location
for f being FinSeq-Location st CurInstr (P1,(Comput (P1,s1,i))) = da :=len f & da in dom p holds
len ((Comput (P1,s1,i)) . f) = len ((Comput (P2,s2,i)) . f)

let da be Int-Location; :: thesis: for f being FinSeq-Location st CurInstr (P1,(Comput (P1,s1,i))) = da :=len f & da in dom p holds
len ((Comput (P1,s1,i)) . f) = len ((Comput (P2,s2,i)) . f)

let f be FinSeq-Location ; :: thesis: ( CurInstr (P1,(Comput (P1,s1,i))) = da :=len f & da in dom p implies len ((Comput (P1,s1,i)) . f) = len ((Comput (P2,s2,i)) . f) )
set Cs1i1 = Comput (P1,s1,(i + 1));
set Cs2i1 = Comput (P2,s2,(i + 1));
A3: (Comput (P1,s1,(i + 1))) | (dom p) = (Comput (P2,s2,(i + 1))) | (dom p) by ;
set Cs2i = Comput (P2,s2,i);
set Cs1i = Comput (P1,s1,i);
set I = CurInstr (P1,(Comput (P1,s1,i)));
A4: Comput (P1,s1,(i + 1)) = Following (P1,(Comput (P1,s1,i))) by EXTPRO_1:3
.= Exec ((CurInstr (P1,(Comput (P1,s1,i)))),(Comput (P1,s1,i))) ;
A5: ( da in dom p implies ( ((Comput (P1,s1,(i + 1))) | (dom p)) . da = (Comput (P1,s1,(i + 1))) . da & ((Comput (P2,s2,(i + 1))) | (dom p)) . da = (Comput (P2,s2,(i + 1))) . da ) ) by FUNCT_1:49;
A6: Comput (P2,s2,(i + 1)) = Following (P2,(Comput (P2,s2,i))) by EXTPRO_1:3
.= Exec ((CurInstr (P2,(Comput (P2,s2,i)))),(Comput (P2,s2,i))) ;
assume that
A7: CurInstr (P1,(Comput (P1,s1,i))) = da :=len f and
A8: ( da in dom p & len ((Comput (P1,s1,i)) . f) <> len ((Comput (P2,s2,i)) . f) ) ; :: thesis: contradiction
( (Exec ((CurInstr (P1,(Comput (P1,s1,i)))),(Comput (P1,s1,i)))) . da = len ((Comput (P1,s1,i)) . f) & (Exec ((CurInstr (P1,(Comput (P1,s1,i)))),(Comput (P2,s2,i)))) . da = len ((Comput (P2,s2,i)) . f) ) by ;
hence contradiction by A1, A4, A6, A5, A3, A8, A2, AMISTD_5:7; :: thesis: verum