let X be set ; :: thesis: for f being complex-valued Function
for r being Complex holds (r (#) f) | X = r (#) (f | X)

let f be complex-valued Function; :: thesis: for r being Complex holds (r (#) f) | X = r (#) (f | X)
let r be Complex; :: thesis: (r (#) f) | X = r (#) (f | X)
A1: now :: thesis: for c being object st c in dom ((r (#) f) | X) holds
((r (#) f) | X) . c = (r (#) (f | X)) . c
let c be object ; :: thesis: ( c in dom ((r (#) f) | X) implies ((r (#) f) | X) . c = (r (#) (f | X)) . c )
assume A2: c in dom ((r (#) f) | X) ; :: thesis: ((r (#) f) | X) . c = (r (#) (f | X)) . c
then A3: c in (dom (r (#) f)) /\ X by RELAT_1:61;
then A4: c in X by XBOOLE_0:def 4;
A5: c in dom (r (#) f) by ;
then c in dom f by VALUED_1:def 5;
then c in (dom f) /\ X by ;
then A6: c in dom (f | X) by RELAT_1:61;
then A7: c in dom (r (#) (f | X)) by VALUED_1:def 5;
thus ((r (#) f) | X) . c = (r (#) f) . c by
.= r * (f . c) by
.= r * ((f | X) . c) by
.= (r (#) (f | X)) . c by ; :: thesis: verum
end;
dom ((r (#) f) | X) = (dom (r (#) f)) /\ X by RELAT_1:61
.= (dom f) /\ X by VALUED_1:def 5
.= dom (f | X) by RELAT_1:61
.= dom (r (#) (f | X)) by VALUED_1:def 5 ;
hence (r (#) f) | X = r (#) (f | X) by ; :: thesis: verum