let X be set ; :: thesis: for f being complex-valued Function

for r being Complex holds (r (#) f) | X = r (#) (f | X)

let f be complex-valued Function; :: thesis: for r being Complex holds (r (#) f) | X = r (#) (f | X)

let r be Complex; :: thesis: (r (#) f) | X = r (#) (f | X)

.= (dom f) /\ X by VALUED_1:def 5

.= dom (f | X) by RELAT_1:61

.= dom (r (#) (f | X)) by VALUED_1:def 5 ;

hence (r (#) f) | X = r (#) (f | X) by A1, FUNCT_1:2; :: thesis: verum

for r being Complex holds (r (#) f) | X = r (#) (f | X)

let f be complex-valued Function; :: thesis: for r being Complex holds (r (#) f) | X = r (#) (f | X)

let r be Complex; :: thesis: (r (#) f) | X = r (#) (f | X)

A1: now :: thesis: for c being object st c in dom ((r (#) f) | X) holds

((r (#) f) | X) . c = (r (#) (f | X)) . c

dom ((r (#) f) | X) =
(dom (r (#) f)) /\ X
by RELAT_1:61
((r (#) f) | X) . c = (r (#) (f | X)) . c

let c be object ; :: thesis: ( c in dom ((r (#) f) | X) implies ((r (#) f) | X) . c = (r (#) (f | X)) . c )

assume A2: c in dom ((r (#) f) | X) ; :: thesis: ((r (#) f) | X) . c = (r (#) (f | X)) . c

then A3: c in (dom (r (#) f)) /\ X by RELAT_1:61;

then A4: c in X by XBOOLE_0:def 4;

A5: c in dom (r (#) f) by A3, XBOOLE_0:def 4;

then c in dom f by VALUED_1:def 5;

then c in (dom f) /\ X by A4, XBOOLE_0:def 4;

then A6: c in dom (f | X) by RELAT_1:61;

then A7: c in dom (r (#) (f | X)) by VALUED_1:def 5;

thus ((r (#) f) | X) . c = (r (#) f) . c by A2, FUNCT_1:47

.= r * (f . c) by A5, VALUED_1:def 5

.= r * ((f | X) . c) by A6, FUNCT_1:47

.= (r (#) (f | X)) . c by A7, VALUED_1:def 5 ; :: thesis: verum

end;assume A2: c in dom ((r (#) f) | X) ; :: thesis: ((r (#) f) | X) . c = (r (#) (f | X)) . c

then A3: c in (dom (r (#) f)) /\ X by RELAT_1:61;

then A4: c in X by XBOOLE_0:def 4;

A5: c in dom (r (#) f) by A3, XBOOLE_0:def 4;

then c in dom f by VALUED_1:def 5;

then c in (dom f) /\ X by A4, XBOOLE_0:def 4;

then A6: c in dom (f | X) by RELAT_1:61;

then A7: c in dom (r (#) (f | X)) by VALUED_1:def 5;

thus ((r (#) f) | X) . c = (r (#) f) . c by A2, FUNCT_1:47

.= r * (f . c) by A5, VALUED_1:def 5

.= r * ((f | X) . c) by A6, FUNCT_1:47

.= (r (#) (f | X)) . c by A7, VALUED_1:def 5 ; :: thesis: verum

.= (dom f) /\ X by VALUED_1:def 5

.= dom (f | X) by RELAT_1:61

.= dom (r (#) (f | X)) by VALUED_1:def 5 ;

hence (r (#) f) | X = r (#) (f | X) by A1, FUNCT_1:2; :: thesis: verum