let R1, R2 be FinSequence of REAL ; :: thesis: ( R1,R2 are_fiberwise_equipotent implies Sum R1 = Sum R2 )
defpred S2[ Nat] means for f, g being FinSequence of REAL st f,g are_fiberwise_equipotent & len f = \$1 holds
Sum f = Sum g;
assume A1: R1,R2 are_fiberwise_equipotent ; :: thesis: Sum R1 = Sum R2
A2: len R1 = len R1 ;
A3: for n being Nat st S2[n] holds
S2[n + 1]
proof
let n be Nat; :: thesis: ( S2[n] implies S2[n + 1] )
assume A4: S2[n] ; :: thesis: S2[n + 1]
let f, g be FinSequence of REAL ; :: thesis: ( f,g are_fiberwise_equipotent & len f = n + 1 implies Sum f = Sum g )
assume that
A5: f,g are_fiberwise_equipotent and
A6: len f = n + 1 ; :: thesis: Sum f = Sum g
set a = f . (n + 1);
A7: rng f = rng g by ;
0 + 1 <= n + 1 by NAT_1:13;
then n + 1 in dom f by ;
then f . (n + 1) in rng g by ;
then consider m being Nat such that
A8: m in dom g and
A9: g . m = f . (n + 1) by FINSEQ_2:10;
set gg = g /^ m;
set gm = g | m;
m <= len g by ;
then A10: len (g | m) = m by FINSEQ_1:59;
A11: 1 <= m by ;
then max (0,(m - 1)) = m - 1 by FINSEQ_2:4;
then reconsider m1 = m - 1 as Element of NAT by FINSEQ_2:5;
A12: m = m1 + 1 ;
then m1 <= m by NAT_1:11;
then A13: Seg m1 c= Seg m by FINSEQ_1:5;
m in Seg m by ;
then (g | m) . m = f . (n + 1) by A8, A9, Th6;
then A14: g | m = ((g | m) | m1) ^ <*(f . (n + 1))*> by ;
set fn = f | n;
A15: g = (g | m) ^ (g /^ m) ;
A16: (g | m) | m1 = (g | m) | (Seg m1) by FINSEQ_1:def 15
.= (g | (Seg m)) | (Seg m1) by FINSEQ_1:def 15
.= g | ((Seg m) /\ (Seg m1)) by RELAT_1:71
.= g | (Seg m1) by
.= g | m1 by FINSEQ_1:def 15 ;
A17: f = (f | n) ^ <*(f . (n + 1))*> by ;
now :: thesis: for x being object holds card (Coim ((f | n),x)) = card (Coim (((g | m1) ^ (g /^ m)),x))
let x be object ; :: thesis: card (Coim ((f | n),x)) = card (Coim (((g | m1) ^ (g /^ m)),x))
card (Coim (f,x)) = card (Coim (g,x)) by A5;
then (card ((f | n) " {x})) + (card (<*(f . (n + 1))*> " {x})) = card ((((g | m1) ^ <*(f . (n + 1))*>) ^ (g /^ m)) " {x}) by
.= (card (((g | m1) ^ <*(f . (n + 1))*>) " {x})) + (card ((g /^ m) " {x})) by FINSEQ_3:57
.= ((card ((g | m1) " {x})) + (card (<*(f . (n + 1))*> " {x}))) + (card ((g /^ m) " {x})) by FINSEQ_3:57
.= ((card ((g | m1) " {x})) + (card ((g /^ m) " {x}))) + (card (<*(f . (n + 1))*> " {x}))
.= (card (((g | m1) ^ (g /^ m)) " {x})) + (card (<*(f . (n + 1))*> " {x})) by FINSEQ_3:57 ;
hence card (Coim ((f | n),x)) = card (Coim (((g | m1) ^ (g /^ m)),x)) ; :: thesis: verum
end;
then A18: f | n,(g | m1) ^ (g /^ m) are_fiberwise_equipotent ;
len (f | n) = n by ;
then Sum (f | n) = Sum ((g | m1) ^ (g /^ m)) by ;
hence Sum f = (Sum ((g | m1) ^ (g /^ m))) + (Sum <*(f . (n + 1))*>) by
.= ((Sum (g | m1)) + (Sum (g /^ m))) + (Sum <*(f . (n + 1))*>) by RVSUM_1:75
.= ((Sum (g | m1)) + (Sum <*(f . (n + 1))*>)) + (Sum (g /^ m))
.= (Sum (g | m)) + (Sum (g /^ m)) by
.= Sum g by ;
:: thesis: verum
end;
A19: S2[ 0 ]
proof
let f, g be FinSequence of REAL ; :: thesis: ( f,g are_fiberwise_equipotent & len f = 0 implies Sum f = Sum g )
assume ( f,g are_fiberwise_equipotent & len f = 0 ) ; :: thesis: Sum f = Sum g
then A20: ( len g = 0 & f = <*> REAL ) by Th3;
then g = <*> REAL ;
hence Sum f = Sum g by A20; :: thesis: verum
end;
for n being Nat holds S2[n] from NAT_1:sch 2(A19, A3);
hence Sum R1 = Sum R2 by A1, A2; :: thesis: verum