let a be Real; :: thesis: ex s being Rational_Sequence st
( s is convergent & lim s = a & ( for n being Nat holds s . n >= a ) )

deffunc H1( Nat) -> set = [/((\$1 + 1) * a)\] / (\$1 + 1);
consider s being Real_Sequence such that
A1: for n being Nat holds s . n = H1(n) from SEQ_1:sch 1();
rng s c= RAT
proof
let y be object ; :: according to TARSKI:def 3 :: thesis: ( not y in rng s or y in RAT )
assume y in rng s ; :: thesis:
then consider n being Element of NAT such that
A2: s . n = y by FUNCT_2:113;
s . n = H1(n) by A1;
hence y in RAT by ; :: thesis: verum
end;
then reconsider s = s as Rational_Sequence by RELAT_1:def 19;
deffunc H2( Nat) -> set = 1 / (\$1 + 1);
consider s2 being Real_Sequence such that
A3: for n being Nat holds s2 . n = H2(n) from SEQ_1:sch 1();
take s ; :: thesis: ( s is convergent & lim s = a & ( for n being Nat holds s . n >= a ) )
set s1 = seq_const a;
set s3 = () + s2;
A4: s2 is convergent by ;
then A5: (seq_const a) + s2 is convergent ;
A6: now :: thesis: for n being Nat holds
( () . n <= s . n & s . n <= (() + s2) . n )
let n be Nat; :: thesis: ( () . n <= s . n & s . n <= (() + s2) . n )
((n + 1) * a) + 1 >= [/((n + 1) * a)\] by INT_1:def 7;
then (((n + 1) * a) + 1) * ((n + 1) ") >= [/((n + 1) * a)\] / (n + 1) by XREAL_1:64;
then ((a / (n + 1)) * (n + 1)) + (1 / (n + 1)) >= s . n by A1;
then a + (1 / (n + 1)) >= s . n by XCMPLX_1:87;
then ((seq_const a) . n) + (1 / (n + 1)) >= s . n by SEQ_1:57;
then A7: ((seq_const a) . n) + (s2 . n) >= s . n by A3;
[/((n + 1) * a)\] >= (n + 1) * a by INT_1:def 7;
then [/((n + 1) * a)\] * ((n + 1) ") >= (a * (n + 1)) * ((n + 1) ") by XREAL_1:64;
then [/((n + 1) * a)\] * ((n + 1) ") >= a * ((n + 1) * ((n + 1) ")) ;
then [/((n + 1) * a)\] * ((n + 1) ") >= a * 1 by XCMPLX_0:def 7;
then [/((n + 1) * a)\] / (n + 1) >= () . n by SEQ_1:57;
hence ( (seq_const a) . n <= s . n & s . n <= (() + s2) . n ) by ; :: thesis: verum
end;
lim s2 = 0 by ;
then A8: lim (() + s2) = (() . 0) + 0 by
.= a by SEQ_1:57 ;
A9: lim () = () . 0 by SEQ_4:26
.= a by SEQ_1:57 ;
hence s is convergent by ; :: thesis: ( lim s = a & ( for n being Nat holds s . n >= a ) )
thus lim s = a by A5, A8, A9, A6, SEQ_2:20; :: thesis: for n being Nat holds s . n >= a
let n be Nat; :: thesis: s . n >= a
s . n >= () . n by A6;
hence s . n >= a by SEQ_1:57; :: thesis: verum