let X be non empty set ; :: thesis: for S being SigmaField of X

for M being sigma_Measure of S

for f, g being PartFunc of X,REAL

for k being positive Real

for v, u being VECTOR of (RLSp_AlmostZeroLpFunct (M,k)) st f = v & g = u holds

f + g = v + u

let S be SigmaField of X; :: thesis: for M being sigma_Measure of S

for f, g being PartFunc of X,REAL

for k being positive Real

for v, u being VECTOR of (RLSp_AlmostZeroLpFunct (M,k)) st f = v & g = u holds

f + g = v + u

let M be sigma_Measure of S; :: thesis: for f, g being PartFunc of X,REAL

for k being positive Real

for v, u being VECTOR of (RLSp_AlmostZeroLpFunct (M,k)) st f = v & g = u holds

f + g = v + u

let f, g be PartFunc of X,REAL; :: thesis: for k being positive Real

for v, u being VECTOR of (RLSp_AlmostZeroLpFunct (M,k)) st f = v & g = u holds

f + g = v + u

let k be positive Real; :: thesis: for v, u being VECTOR of (RLSp_AlmostZeroLpFunct (M,k)) st f = v & g = u holds

f + g = v + u

let v, u be VECTOR of (RLSp_AlmostZeroLpFunct (M,k)); :: thesis: ( f = v & g = u implies f + g = v + u )

reconsider v2 = v, u2 = u as VECTOR of (RLSp_LpFunct (M,k)) by TARSKI:def 3;

assume A1: ( f = v & g = u ) ; :: thesis: f + g = v + u

v + u = v2 + u2 by LPSPACE1:4;

hence v + u = f + g by Th29, A1; :: thesis: verum

for M being sigma_Measure of S

for f, g being PartFunc of X,REAL

for k being positive Real

for v, u being VECTOR of (RLSp_AlmostZeroLpFunct (M,k)) st f = v & g = u holds

f + g = v + u

let S be SigmaField of X; :: thesis: for M being sigma_Measure of S

for f, g being PartFunc of X,REAL

for k being positive Real

for v, u being VECTOR of (RLSp_AlmostZeroLpFunct (M,k)) st f = v & g = u holds

f + g = v + u

let M be sigma_Measure of S; :: thesis: for f, g being PartFunc of X,REAL

for k being positive Real

for v, u being VECTOR of (RLSp_AlmostZeroLpFunct (M,k)) st f = v & g = u holds

f + g = v + u

let f, g be PartFunc of X,REAL; :: thesis: for k being positive Real

for v, u being VECTOR of (RLSp_AlmostZeroLpFunct (M,k)) st f = v & g = u holds

f + g = v + u

let k be positive Real; :: thesis: for v, u being VECTOR of (RLSp_AlmostZeroLpFunct (M,k)) st f = v & g = u holds

f + g = v + u

let v, u be VECTOR of (RLSp_AlmostZeroLpFunct (M,k)); :: thesis: ( f = v & g = u implies f + g = v + u )

reconsider v2 = v, u2 = u as VECTOR of (RLSp_LpFunct (M,k)) by TARSKI:def 3;

assume A1: ( f = v & g = u ) ; :: thesis: f + g = v + u

v + u = v2 + u2 by LPSPACE1:4;

hence v + u = f + g by Th29, A1; :: thesis: verum