let n be Nat; :: thesis: for C being Simple_closed_curve
for j, k being Nat st 1 <= j & j <= k & k <= width (Gauge (C,(n + 1))) & (Gauge (C,(n + 1))) * ((Center (Gauge (C,(n + 1)))),k) in Upper_Arc (L~ (Cage (C,(n + 1)))) & (Gauge (C,(n + 1))) * ((Center (Gauge (C,(n + 1)))),j) in Lower_Arc (L~ (Cage (C,(n + 1)))) holds
LSeg (((Gauge (C,(n + 1))) * ((Center (Gauge (C,(n + 1)))),j)),((Gauge (C,(n + 1))) * ((Center (Gauge (C,(n + 1)))),k))) meets Upper_Arc C

let C be Simple_closed_curve; :: thesis: for j, k being Nat st 1 <= j & j <= k & k <= width (Gauge (C,(n + 1))) & (Gauge (C,(n + 1))) * ((Center (Gauge (C,(n + 1)))),k) in Upper_Arc (L~ (Cage (C,(n + 1)))) & (Gauge (C,(n + 1))) * ((Center (Gauge (C,(n + 1)))),j) in Lower_Arc (L~ (Cage (C,(n + 1)))) holds
LSeg (((Gauge (C,(n + 1))) * ((Center (Gauge (C,(n + 1)))),j)),((Gauge (C,(n + 1))) * ((Center (Gauge (C,(n + 1)))),k))) meets Upper_Arc C

let j, k be Nat; :: thesis: ( 1 <= j & j <= k & k <= width (Gauge (C,(n + 1))) & (Gauge (C,(n + 1))) * ((Center (Gauge (C,(n + 1)))),k) in Upper_Arc (L~ (Cage (C,(n + 1)))) & (Gauge (C,(n + 1))) * ((Center (Gauge (C,(n + 1)))),j) in Lower_Arc (L~ (Cage (C,(n + 1)))) implies LSeg (((Gauge (C,(n + 1))) * ((Center (Gauge (C,(n + 1)))),j)),((Gauge (C,(n + 1))) * ((Center (Gauge (C,(n + 1)))),k))) meets Upper_Arc C )
assume that
A1: 1 <= j and
A2: j <= k and
A3: k <= width (Gauge (C,(n + 1))) and
A4: (Gauge (C,(n + 1))) * ((Center (Gauge (C,(n + 1)))),k) in Upper_Arc (L~ (Cage (C,(n + 1)))) and
A5: (Gauge (C,(n + 1))) * ((Center (Gauge (C,(n + 1)))),j) in Lower_Arc (L~ (Cage (C,(n + 1)))) ; :: thesis: LSeg (((Gauge (C,(n + 1))) * ((Center (Gauge (C,(n + 1)))),j)),((Gauge (C,(n + 1))) * ((Center (Gauge (C,(n + 1)))),k))) meets Upper_Arc C
A6: len (Gauge (C,(n + 1))) >= 4 by JORDAN8:10;
then len (Gauge (C,(n + 1))) >= 2 by XXREAL_0:2;
then A7: 1 < Center (Gauge (C,(n + 1))) by JORDAN1B:14;
len (Gauge (C,(n + 1))) >= 3 by ;
hence LSeg (((Gauge (C,(n + 1))) * ((Center (Gauge (C,(n + 1)))),j)),((Gauge (C,(n + 1))) * ((Center (Gauge (C,(n + 1)))),k))) meets Upper_Arc C by A1, A2, A3, A4, A5, A7, Th24, JORDAN1B:15; :: thesis: verum