let a, b, c, d be Real; :: thesis: for n being non zero Element of NAT
for f being PartFunc of REAL,(REAL n) st a <= b & c <= d & f is_integrable_on ['a,b'] & |.f.| is_integrable_on ['a,b'] & f | ['a,b'] is bounded & ['a,b'] c= dom f & c in ['a,b'] & d in ['a,b'] holds
( |.f.| is_integrable_on ['c,d'] & |.f.| | ['c,d'] is bounded & |.(integral (f,c,d)).| <= integral (|.f.|,c,d) )

let n be non zero Element of NAT ; :: thesis: for f being PartFunc of REAL,(REAL n) st a <= b & c <= d & f is_integrable_on ['a,b'] & |.f.| is_integrable_on ['a,b'] & f | ['a,b'] is bounded & ['a,b'] c= dom f & c in ['a,b'] & d in ['a,b'] holds
( |.f.| is_integrable_on ['c,d'] & |.f.| | ['c,d'] is bounded & |.(integral (f,c,d)).| <= integral (|.f.|,c,d) )

let f be PartFunc of REAL,(REAL n); :: thesis: ( a <= b & c <= d & f is_integrable_on ['a,b'] & |.f.| is_integrable_on ['a,b'] & f | ['a,b'] is bounded & ['a,b'] c= dom f & c in ['a,b'] & d in ['a,b'] implies ( |.f.| is_integrable_on ['c,d'] & |.f.| | ['c,d'] is bounded & |.(integral (f,c,d)).| <= integral (|.f.|,c,d) ) )
assume that
A1: a <= b and
A2: c <= d and
A3: ( f is_integrable_on ['a,b'] & |.f.| is_integrable_on ['a,b'] & f | ['a,b'] is bounded & ['a,b'] c= dom f & c in ['a,b'] & d in ['a,b'] ) ; :: thesis: ( |.f.| is_integrable_on ['c,d'] & |.f.| | ['c,d'] is bounded & |.(integral (f,c,d)).| <= integral (|.f.|,c,d) )
( min (c,d) = c & max (c,d) = d ) by ;
hence ( |.f.| is_integrable_on ['c,d'] & |.f.| | ['c,d'] is bounded & |.(integral (f,c,d)).| <= integral (|.f.|,c,d) ) by A1, A3, Th22; :: thesis: verum