let a, b, c, d be Real; :: thesis: for n being non zero Element of NAT
for f being PartFunc of REAL,(REAL n) st a <= b & f is_integrable_on ['a,b'] & |.f.| is_integrable_on ['a,b'] & f | ['a,b'] is bounded & ['a,b'] c= dom f & c in ['a,b'] & d in ['a,b'] holds
( |.f.| is_integrable_on ['(min (c,d)),(max (c,d))'] & |.f.| | ['(min (c,d)),(max (c,d))'] is bounded & |.(integral (f,c,d)).| <= integral (|.f.|,(min (c,d)),(max (c,d))) )

let n be non zero Element of NAT ; :: thesis: for f being PartFunc of REAL,(REAL n) st a <= b & f is_integrable_on ['a,b'] & |.f.| is_integrable_on ['a,b'] & f | ['a,b'] is bounded & ['a,b'] c= dom f & c in ['a,b'] & d in ['a,b'] holds
( |.f.| is_integrable_on ['(min (c,d)),(max (c,d))'] & |.f.| | ['(min (c,d)),(max (c,d))'] is bounded & |.(integral (f,c,d)).| <= integral (|.f.|,(min (c,d)),(max (c,d))) )

let f be PartFunc of REAL,(REAL n); :: thesis: ( a <= b & f is_integrable_on ['a,b'] & |.f.| is_integrable_on ['a,b'] & f | ['a,b'] is bounded & ['a,b'] c= dom f & c in ['a,b'] & d in ['a,b'] implies ( |.f.| is_integrable_on ['(min (c,d)),(max (c,d))'] & |.f.| | ['(min (c,d)),(max (c,d))'] is bounded & |.(integral (f,c,d)).| <= integral (|.f.|,(min (c,d)),(max (c,d))) ) )
assume A1: ( a <= b & f is_integrable_on ['a,b'] & |.f.| is_integrable_on ['a,b'] & f | ['a,b'] is bounded & ['a,b'] c= dom f & c in ['a,b'] & d in ['a,b'] ) ; :: thesis: ( |.f.| is_integrable_on ['(min (c,d)),(max (c,d))'] & |.f.| | ['(min (c,d)),(max (c,d))'] is bounded & |.(integral (f,c,d)).| <= integral (|.f.|,(min (c,d)),(max (c,d))) )
per cases ( not c <= d or c <= d ) ;
suppose A2: not c <= d ; :: thesis: ( |.f.| is_integrable_on ['(min (c,d)),(max (c,d))'] & |.f.| | ['(min (c,d)),(max (c,d))'] is bounded & |.(integral (f,c,d)).| <= integral (|.f.|,(min (c,d)),(max (c,d))) )
then A3: ['d,c'] = [.d,c.] by INTEGRA5:def 3;
then integral (f,c,d) = - (integral (f,['d,c'])) by INTEGR15:20;
then integral (f,c,d) = - (integral (f,d,c)) by ;
then A4: |.(integral (f,c,d)).| = |.(integral (f,d,c)).| by EUCLID:10;
( d = min (c,d) & c = max (c,d) ) by ;
hence ( |.f.| is_integrable_on ['(min (c,d)),(max (c,d))'] & |.f.| | ['(min (c,d)),(max (c,d))'] is bounded & |.(integral (f,c,d)).| <= integral (|.f.|,(min (c,d)),(max (c,d))) ) by A1, A2, A4, Lm10; :: thesis: verum
end;
suppose A5: c <= d ; :: thesis: ( |.f.| is_integrable_on ['(min (c,d)),(max (c,d))'] & |.f.| | ['(min (c,d)),(max (c,d))'] is bounded & |.(integral (f,c,d)).| <= integral (|.f.|,(min (c,d)),(max (c,d))) )
then ( c = min (c,d) & d = max (c,d) ) by ;
hence ( |.f.| is_integrable_on ['(min (c,d)),(max (c,d))'] & |.f.| | ['(min (c,d)),(max (c,d))'] is bounded & |.(integral (f,c,d)).| <= integral (|.f.|,(min (c,d)),(max (c,d))) ) by A1, A5, Lm10; :: thesis: verum
end;
end;