let f be PartFunc of REAL,REAL; :: thesis: for a, b being Real st a < b & ['a,b'] c= dom f & f is_right_ext_Riemann_integrable_on a,b holds
for r being Real holds
( r (#) f is_right_ext_Riemann_integrable_on a,b & ext_right_integral ((r (#) f),a,b) = r * (ext_right_integral (f,a,b)) )

let a, b be Real; :: thesis: ( a < b & ['a,b'] c= dom f & f is_right_ext_Riemann_integrable_on a,b implies for r being Real holds
( r (#) f is_right_ext_Riemann_integrable_on a,b & ext_right_integral ((r (#) f),a,b) = r * (ext_right_integral (f,a,b)) ) )

assume that
A1: a < b and
A2: ['a,b'] c= dom f and
A3: f is_right_ext_Riemann_integrable_on a,b ; :: thesis: for r being Real holds
( r (#) f is_right_ext_Riemann_integrable_on a,b & ext_right_integral ((r (#) f),a,b) = r * (ext_right_integral (f,a,b)) )

for r being Real holds
( r (#) f is_right_ext_Riemann_integrable_on a,b & ext_right_integral ((r (#) f),a,b) = r * (ext_right_integral (f,a,b)) )
proof
let r be Real; :: thesis: ( r (#) f is_right_ext_Riemann_integrable_on a,b & ext_right_integral ((r (#) f),a,b) = r * (ext_right_integral (f,a,b)) )
consider Intf being PartFunc of REAL,REAL such that
A4: dom Intf = [.a,b.[ and
A5: for x being Real st x in dom Intf holds
Intf . x = integral (f,a,x) and
A6: Intf is_left_convergent_in b and
A7: ext_right_integral (f,a,b) = lim_left (Intf,b) by ;
set Intfg = r (#) Intf;
A8: r (#) Intf is_left_convergent_in b by ;
A9: ( dom (r (#) Intf) = [.a,b.[ & ( for x being Real st x in dom (r (#) Intf) holds
(r (#) Intf) . x = integral ((r (#) f),a,x) ) )
proof
A10: ['a,b'] = [.a,b.] by ;
thus A11: dom (r (#) Intf) = [.a,b.[ by ; :: thesis: for x being Real st x in dom (r (#) Intf) holds
(r (#) Intf) . x = integral ((r (#) f),a,x)

let x be Real; :: thesis: ( x in dom (r (#) Intf) implies (r (#) Intf) . x = integral ((r (#) f),a,x) )
assume A12: x in dom (r (#) Intf) ; :: thesis: (r (#) Intf) . x = integral ((r (#) f),a,x)
then A13: a <= x by ;
then A14: ['a,x'] = [.a,x.] by INTEGRA5:def 3;
A15: x < b by ;
then A16: [.a,x.] c= [.a,b.] by XXREAL_1:34;
A17: ( f is_integrable_on ['a,x'] & f | ['a,x'] is bounded ) by A3, A13, A15;
thus (r (#) Intf) . x = r * (Intf . x) by
.= r * (integral (f,a,x)) by A4, A5, A11, A12
.= integral ((r (#) f),a,x) by ; :: thesis: verum
end;
for d being Real st a <= d & d < b holds
( r (#) f is_integrable_on ['a,d'] & (r (#) f) | ['a,d'] is bounded )
proof
let d be Real; :: thesis: ( a <= d & d < b implies ( r (#) f is_integrable_on ['a,d'] & (r (#) f) | ['a,d'] is bounded ) )
assume A18: ( a <= d & d < b ) ; :: thesis: ( r (#) f is_integrable_on ['a,d'] & (r (#) f) | ['a,d'] is bounded )
then A19: ( ['a,d'] = [.a,d.] & [.a,d.] c= [.a,b.] ) by ;
A20: ( f is_integrable_on ['a,d'] & f | ['a,d'] is bounded ) by ;
['a,b'] = [.a,b.] by ;
then ['a,d'] c= dom f by ;
hence ( r (#) f is_integrable_on ['a,d'] & (r (#) f) | ['a,d'] is bounded ) by ; :: thesis: verum
end;
hence A21: r (#) f is_right_ext_Riemann_integrable_on a,b by A9, A8; :: thesis: ext_right_integral ((r (#) f),a,b) = r * (ext_right_integral (f,a,b))
lim_left ((r (#) Intf),b) = r * (ext_right_integral (f,a,b)) by ;
hence ext_right_integral ((r (#) f),a,b) = r * (ext_right_integral (f,a,b)) by A9, A8, A21, Def3; :: thesis: verum
end;
hence for r being Real holds
( r (#) f is_right_ext_Riemann_integrable_on a,b & ext_right_integral ((r (#) f),a,b) = r * (ext_right_integral (f,a,b)) ) ; :: thesis: verum