let M be non empty calculating_type halting Moore-SM_Final over , succ REAL; :: thesis: ( the carrier of M = succ REAL & the FinalS of M = REAL & the InitS of M = REAL & the OFun of M = id the carrier of M & ( for x, y being Real st x >= y holds
the Tran of M . [ the InitS of M,[x,y]] = x ) & ( for x, y being Real st x < y holds
the Tran of M . [ the InitS of M,[x,y]] = y ) implies for x, y being Element of REAL holds Result ([x,y],M) = max (x,y) )

assume that
A1: the carrier of M = succ REAL and
A2: the FinalS of M = REAL and
A3: the InitS of M = REAL and
A4: the OFun of M = id the carrier of M and
A5: for x, y being Real st x >= y holds
the Tran of M . [ the InitS of M,[x,y]] = x and
A6: for x, y being Real st x < y holds
the Tran of M . [ the InitS of M,[x,y]] = y ; :: thesis: for x, y being Element of REAL holds Result ([x,y],M) = max (x,y)
let x, y be Element of REAL ; :: thesis: Result ([x,y],M) = max (x,y)
max (x,y) in REAL by XREAL_0:def 1;
then A7: max (x,y) in succ REAL by XBOOLE_0:def 3;
max (x,y) is_result_of [x,y],M by A1, A2, A3, A4, A5, A6, Th23;
hence Result ([x,y],M) = max (x,y) by ; :: thesis: verum