let D be non empty set ; :: thesis: for d1, d2 being Element of D
for i being natural Number
for T being Tuple of i,D
for F, G being BinOp of D st F is_distributive_wrt G holds
F [:] (T,(G . (d1,d2))) = G .: ((F [:] (T,d1)),(F [:] (T,d2)))

let d1, d2 be Element of D; :: thesis: for i being natural Number
for T being Tuple of i,D
for F, G being BinOp of D st F is_distributive_wrt G holds
F [:] (T,(G . (d1,d2))) = G .: ((F [:] (T,d1)),(F [:] (T,d2)))

let i be natural Number ; :: thesis: for T being Tuple of i,D
for F, G being BinOp of D st F is_distributive_wrt G holds
F [:] (T,(G . (d1,d2))) = G .: ((F [:] (T,d1)),(F [:] (T,d2)))

let T be Tuple of i,D; :: thesis: for F, G being BinOp of D st F is_distributive_wrt G holds
F [:] (T,(G . (d1,d2))) = G .: ((F [:] (T,d1)),(F [:] (T,d2)))

let F, G be BinOp of D; :: thesis: ( F is_distributive_wrt G implies F [:] (T,(G . (d1,d2))) = G .: ((F [:] (T,d1)),(F [:] (T,d2))) )
assume A1: F is_distributive_wrt G ; :: thesis: F [:] (T,(G . (d1,d2))) = G .: ((F [:] (T,d1)),(F [:] (T,d2)))
per cases ( i = 0 or i <> 0 ) ;
suppose i = 0 ; :: thesis: F [:] (T,(G . (d1,d2))) = G .: ((F [:] (T,d1)),(F [:] (T,d2)))
then ( F [:] (T,d1) = <*> D & F [:] (T,(G . (d1,d2))) = <*> D ) by Lm3;
hence F [:] (T,(G . (d1,d2))) = G .: ((F [:] (T,d1)),(F [:] (T,d2))) by FINSEQ_2:73; :: thesis: verum
end;
suppose i <> 0 ; :: thesis: F [:] (T,(G . (d1,d2))) = G .: ((F [:] (T,d1)),(F [:] (T,d2)))
then reconsider C = Seg i as non empty set ;
T is Function of C,D by Lm4;
hence F [:] (T,(G . (d1,d2))) = G .: ((F [:] (T,d1)),(F [:] (T,d2))) by ; :: thesis: verum
end;
end;