let FT be non empty RelStr ; :: thesis: for A being Subset of FT holds ((A `) ^b) ` = A ^i
let A be Subset of FT; :: thesis: ((A `) ^b) ` = A ^i
for x being object holds
( x in ((A `) ^b) ` iff x in A ^i )
proof
let x be object ; :: thesis: ( x in ((A `) ^b) ` iff x in A ^i )
thus ( x in ((A `) ^b) ` implies x in A ^i ) :: thesis: ( x in A ^i implies x in ((A `) ^b) ` )
proof
assume A1: x in ((A `) ^b) ` ; :: thesis: x in A ^i
then reconsider y = x as Element of FT ;
not y in (A `) ^b by ;
then U_FT y misses A ` ;
then (U_FT y) /\ (A `) = {} ;
then (U_FT y) \ A = {} by SUBSET_1:13;
then U_FT y c= A by XBOOLE_1:37;
hence x in A ^i ; :: thesis: verum
end;
assume A2: x in A ^i ; :: thesis: x in ((A `) ^b) `
then reconsider y = x as Element of FT ;
U_FT y c= A by ;
then (U_FT y) \ A = {} by XBOOLE_1:37;
then (U_FT y) /\ (A `) = {} by SUBSET_1:13;
then U_FT y misses A ` ;
then not y in (A `) ^b by Th8;
hence x in ((A `) ^b) ` by SUBSET_1:29; :: thesis: verum
end;
hence ((A `) ^b) ` = A ^i by TARSKI:2; :: thesis: verum