let r, x0 be Real; :: thesis: for f being PartFunc of REAL,REAL st x0 in dom f & f is_continuous_in x0 holds
r (#) f is_continuous_in x0

let f be PartFunc of REAL,REAL; :: thesis: ( x0 in dom f & f is_continuous_in x0 implies r (#) f is_continuous_in x0 )
assume x0 in dom f ; :: thesis: ( not f is_continuous_in x0 or r (#) f is_continuous_in x0 )
then A1: x0 in dom (r (#) f) by VALUED_1:def 5;
assume A2: f is_continuous_in x0 ; :: thesis:
let s1 be Real_Sequence; :: according to FCONT_1:def 1 :: thesis: ( rng s1 c= dom (r (#) f) & s1 is convergent & lim s1 = x0 implies ( (r (#) f) /* s1 is convergent & (r (#) f) . x0 = lim ((r (#) f) /* s1) ) )
assume that
A3: rng s1 c= dom (r (#) f) and
A4: ( s1 is convergent & lim s1 = x0 ) ; :: thesis: ( (r (#) f) /* s1 is convergent & (r (#) f) . x0 = lim ((r (#) f) /* s1) )
A5: rng s1 c= dom f by ;
then A6: f . x0 = lim (f /* s1) by A2, A4;
A7: f /* s1 is convergent by A2, A4, A5;
then r (#) (f /* s1) is convergent ;
hence (r (#) f) /* s1 is convergent by ; :: thesis: (r (#) f) . x0 = lim ((r (#) f) /* s1)
thus (r (#) f) . x0 = r * (f . x0) by
.= lim (r (#) (f /* s1)) by
.= lim ((r (#) f) /* s1) by ; :: thesis: verum