let X be non empty set ; :: thesis: for Y being ComplexLinearSpace
for f, g being Element of Funcs (X, the carrier of Y)
for a being Complex holds (FuncAdd (X,Y)) . (((FuncExtMult (X,Y)) . [a,f]),((FuncExtMult (X,Y)) . [a,g])) = (FuncExtMult (X,Y)) . [a,((FuncAdd (X,Y)) . (f,g))]

let Y be ComplexLinearSpace; :: thesis: for f, g being Element of Funcs (X, the carrier of Y)
for a being Complex holds (FuncAdd (X,Y)) . (((FuncExtMult (X,Y)) . [a,f]),((FuncExtMult (X,Y)) . [a,g])) = (FuncExtMult (X,Y)) . [a,((FuncAdd (X,Y)) . (f,g))]

let f, g be Element of Funcs (X, the carrier of Y); :: thesis: for a being Complex holds (FuncAdd (X,Y)) . (((FuncExtMult (X,Y)) . [a,f]),((FuncExtMult (X,Y)) . [a,g])) = (FuncExtMult (X,Y)) . [a,((FuncAdd (X,Y)) . (f,g))]
let a be Complex; :: thesis: (FuncAdd (X,Y)) . (((FuncExtMult (X,Y)) . [a,f]),((FuncExtMult (X,Y)) . [a,g])) = (FuncExtMult (X,Y)) . [a,((FuncAdd (X,Y)) . (f,g))]
reconsider a1 = a as Element of COMPLEX by XCMPLX_0:def 2;
now :: thesis: for x being Element of X holds ((FuncAdd (X,Y)) . (((FuncExtMult (X,Y)) . [a1,f]),((FuncExtMult (X,Y)) . [a1,g]))) . x = ((FuncExtMult (X,Y)) . [a1,((FuncAdd (X,Y)) . (f,g))]) . x
let x be Element of X; :: thesis: ((FuncAdd (X,Y)) . (((FuncExtMult (X,Y)) . [a1,f]),((FuncExtMult (X,Y)) . [a1,g]))) . x = ((FuncExtMult (X,Y)) . [a1,((FuncAdd (X,Y)) . (f,g))]) . x
thus ((FuncAdd (X,Y)) . (((FuncExtMult (X,Y)) . [a1,f]),((FuncExtMult (X,Y)) . [a1,g]))) . x = (((FuncExtMult (X,Y)) . [a1,f]) . x) + (((FuncExtMult (X,Y)) . [a1,g]) . x) by LOPBAN_1:1
.= (a1 * (f . x)) + (((FuncExtMult (X,Y)) . [a1,g]) . x) by Th2
.= (a * (f . x)) + (a * (g . x)) by Th2
.= a * ((f . x) + (g . x)) by CLVECT_1:def 2
.= a * (((FuncAdd (X,Y)) . (f,g)) . x) by LOPBAN_1:1
.= ((FuncExtMult (X,Y)) . [a1,((FuncAdd (X,Y)) . (f,g))]) . x by Th2 ; :: thesis: verum
end;
hence (FuncAdd (X,Y)) . (((FuncExtMult (X,Y)) . [a,f]),((FuncExtMult (X,Y)) . [a,g])) = (FuncExtMult (X,Y)) . [a,((FuncAdd (X,Y)) . (f,g))] by FUNCT_2:63; :: thesis: verum