let X1, X2 be non empty set ; :: thesis: for cF1 being Filter of X1
for cF2 being Filter of X2
for Y being non empty Hausdorff regular TopSpace
for f being Function of [:X1,X2:],Y st lim_filter (f,<.cF1,cF2.)) <> {} & ( for x being Element of X2 holds lim_filter ((ProjMap2 (f,x)),cF1) <> {} ) holds
lim_filter (f,<.cF1,cF2.)) = lim_filter ((lim_in_cod1 (f,cF1)),cF2)

let cF1 be Filter of X1; :: thesis: for cF2 being Filter of X2
for Y being non empty Hausdorff regular TopSpace
for f being Function of [:X1,X2:],Y st lim_filter (f,<.cF1,cF2.)) <> {} & ( for x being Element of X2 holds lim_filter ((ProjMap2 (f,x)),cF1) <> {} ) holds
lim_filter (f,<.cF1,cF2.)) = lim_filter ((lim_in_cod1 (f,cF1)),cF2)

let cF2 be Filter of X2; :: thesis: for Y being non empty Hausdorff regular TopSpace
for f being Function of [:X1,X2:],Y st lim_filter (f,<.cF1,cF2.)) <> {} & ( for x being Element of X2 holds lim_filter ((ProjMap2 (f,x)),cF1) <> {} ) holds
lim_filter (f,<.cF1,cF2.)) = lim_filter ((lim_in_cod1 (f,cF1)),cF2)

let Y be non empty Hausdorff regular TopSpace; :: thesis: for f being Function of [:X1,X2:],Y st lim_filter (f,<.cF1,cF2.)) <> {} & ( for x being Element of X2 holds lim_filter ((ProjMap2 (f,x)),cF1) <> {} ) holds
lim_filter (f,<.cF1,cF2.)) = lim_filter ((lim_in_cod1 (f,cF1)),cF2)

let f be Function of [:X1,X2:],Y; :: thesis: ( lim_filter (f,<.cF1,cF2.)) <> {} & ( for x being Element of X2 holds lim_filter ((ProjMap2 (f,x)),cF1) <> {} ) implies lim_filter (f,<.cF1,cF2.)) = lim_filter ((lim_in_cod1 (f,cF1)),cF2) )
assume that
A1: lim_filter (f,<.cF1,cF2.)) <> {} and
A2: for x being Element of X2 holds lim_filter ((ProjMap2 (f,x)),cF1) <> {} ; :: thesis: lim_filter (f,<.cF1,cF2.)) = lim_filter ((lim_in_cod1 (f,cF1)),cF2)
consider y being object such that
A3: lim_filter (f,<.cF1,cF2.)) = {y} by ;
A4: lim_filter (f,<.cF1,cF2.)) c= lim_filter ((lim_in_cod1 (f,cF1)),cF2) by ;
A5: y in lim_filter (f,<.cF1,cF2.)) by ;
( not lim_filter ((lim_in_cod1 (f,cF1)),cF2) is empty & lim_filter ((lim_in_cod1 (f,cF1)),cF2) is trivial ) by A4, A3;
then ex z being object st lim_filter ((lim_in_cod1 (f,cF1)),cF2) = {z} by ZFMISC_1:131;
hence lim_filter (f,<.cF1,cF2.)) = lim_filter ((lim_in_cod1 (f,cF1)),cF2) by ; :: thesis: verum