let Y be non empty set ; :: thesis: for G being Subset of ()
for A, B, C, D, E being a_partition of Y st G = {A,B,C,D,E} & A <> C & B <> C & C <> D & C <> E holds
CompF (C,G) = ((A '/\' B) '/\' D) '/\' E

let G be Subset of (); :: thesis: for A, B, C, D, E being a_partition of Y st G = {A,B,C,D,E} & A <> C & B <> C & C <> D & C <> E holds
CompF (C,G) = ((A '/\' B) '/\' D) '/\' E

let A, B, C, D, E be a_partition of Y; :: thesis: ( G = {A,B,C,D,E} & A <> C & B <> C & C <> D & C <> E implies CompF (C,G) = ((A '/\' B) '/\' D) '/\' E )
assume that
A1: G = {A,B,C,D,E} and
A2: ( A <> C & B <> C & C <> D & C <> E ) ; :: thesis: CompF (C,G) = ((A '/\' B) '/\' D) '/\' E
{A,B,C,D,E} = {A,B,C} \/ {D,E} by ENUMSET1:9;
then {A,B,C,D,E} = ({A} \/ {B,C}) \/ {D,E} by ENUMSET1:2;
then {A,B,C,D,E} = {A,C,B} \/ {D,E} by ENUMSET1:2;
then {A,B,C,D,E} = ({A,C} \/ {B}) \/ {D,E} by ENUMSET1:3;
then {A,B,C,D,E} = {C,A,B} \/ {D,E} by ENUMSET1:3;
then G = {C,A,B,D,E} by ;
hence CompF (C,G) = ((A '/\' B) '/\' D) '/\' E by ; :: thesis: verum