let I be set ; :: thesis: for A, B being ManySortedSet of I st A is_transformable_to B holds
for x being set st x in MSFuncs (A,B) holds
x is ManySortedFunction of A,B

let A, B be ManySortedSet of I; :: thesis: ( A is_transformable_to B implies for x being set st x in MSFuncs (A,B) holds
x is ManySortedFunction of A,B )

assume A1: A is_transformable_to B ; :: thesis: for x being set st x in MSFuncs (A,B) holds
x is ManySortedFunction of A,B

set f = (Funcs) (A,B);
let x be set ; :: thesis: ( x in MSFuncs (A,B) implies x is ManySortedFunction of A,B )
assume x in MSFuncs (A,B) ; :: thesis: x is ManySortedFunction of A,B
then x in product ((Funcs) (A,B)) by ;
then consider g being Function such that
A2: x = g and
A3: dom g = dom ((Funcs) (A,B)) and
A4: for i being object st i in dom ((Funcs) (A,B)) holds
g . i in ((Funcs) (A,B)) . i by CARD_3:def 5;
A5: dom ((Funcs) (A,B)) = I by PARTFUN1:def 2;
A6: for i being set st i in I holds
g . i in Funcs ((A . i),(B . i))
proof
let i be set ; :: thesis: ( i in I implies g . i in Funcs ((A . i),(B . i)) )
assume A7: i in I ; :: thesis: g . i in Funcs ((A . i),(B . i))
then ((Funcs) (A,B)) . i = Funcs ((A . i),(B . i)) by PBOOLE:def 17;
hence g . i in Funcs ((A . i),(B . i)) by A4, A5, A7; :: thesis: verum
end;
A8: for i being set st i in I holds
ex F being Function st
( F = g . i & dom F = A . i & rng F c= B . i )
proof
let i be set ; :: thesis: ( i in I implies ex F being Function st
( F = g . i & dom F = A . i & rng F c= B . i ) )

assume i in I ; :: thesis: ex F being Function st
( F = g . i & dom F = A . i & rng F c= B . i )

then g . i in Funcs ((A . i),(B . i)) by A6;
hence ex F being Function st
( F = g . i & dom F = A . i & rng F c= B . i ) by FUNCT_2:def 2; :: thesis: verum
end;
A9: for i being object st i in I holds
g . i is Function of (A . i),(B . i)
proof
let i be object ; :: thesis: ( i in I implies g . i is Function of (A . i),(B . i) )
assume A10: i in I ; :: thesis: g . i is Function of (A . i),(B . i)
ex F being Function st
( F = g . i & dom F = A . i & rng F c= B . i ) by ;
hence g . i is Function of (A . i),(B . i) by FUNCT_2:2; :: thesis: verum
end;
dom g = I by ;
then g is ManySortedSet of I by ;
hence x is ManySortedFunction of A,B by ; :: thesis: verum