:: On the memory of SCM+FSA
:: by Library Committee
::
:: Received October 1, 2011
:: Copyright (c) 2011-2018 Association of Mizar Users
:: (Stowarzyszenie Uzytkownikow Mizara, Bialystok, Poland).
:: This code can be distributed under the GNU General Public Licence
:: version 3.0 or later, or the Creative Commons Attribution-ShareAlike
:: License version 3.0 or later, subject to the binding interpretation
:: detailed in file COPYING.interpretation.
:: See COPYING.GPL and COPYING.CC-BY-SA for the full text of these
:: licenses, or see http://www.gnu.org/licenses/gpl.html and
:: http://creativecommons.org/licenses/by-sa/3.0/.
environ
vocabularies NUMBERS, SUBSET_1, AMI_1, SCMFSA_2, FUNCT_4, FUNCOP_1, RELAT_1,
FUNCT_1, TARSKI, XBOOLE_0, CARD_1, NAT_1, ARYTM_3, FINSET_1, STRUCT_0,
FSM_1, AMI_2, INT_1, PARTFUN1, FINSEQ_1, XXREAL_0, ZFMISC_1, SCMFSA6A,
SCMFSA6C, GOBRD13, MEMSTR_0, SF_MASTR, SFMASTR1, SCMBSORT, CLASSES1,
VALUED_0, ORDINAL1;
notations TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, CARD_1, ORDINAL1, NUMBERS,
XCMPLX_0, COMPLEX1, XXREAL_2, ENUMSET1, CARD_3, CLASSES1, INT_1, RELAT_1,
FUNCT_1, NAT_1, PARTFUN1, FUNCT_2, FINSEQ_1, INT_2, NAT_D, SEQ_4,
VALUED_0, RFINSEQ, FINSEQ_2, FINSET_1, FUNCT_4, DOMAIN_1, VALUED_1,
AFINSQ_1, STRUCT_0, MEMSTR_0, AMI_2, AMI_3, EXTPRO_1, FUNCT_7, SCMFSA_2,
FUNCOP_1, XXREAL_0;
constructors WELLORD2, DOMAIN_1, XXREAL_0, INT_2, SCMFSA_2, RELSET_1,
VALUED_1, AMI_3, PRE_POLY, AMISTD_1, FUNCT_7, MEMSTR_0, SCMFSA_1,
XXREAL_2, SEQ_4, XXREAL_1, ENUMSET1, CLASSES1, VALUED_0, RFINSEQ;
registrations FUNCT_1, ORDINAL1, RELSET_1, FUNCOP_1, FINSET_1, XREAL_0, INT_1,
STRUCT_0, SCMFSA_2, FUNCT_4, MEMSTR_0, AMI_3, SCM_INST, CARD_1, XXREAL_2,
NAT_1, MEMBERED, AMI_5, VALUED_0;
requirements NUMERALS, REAL, SUBSET, BOOLE, ARITHM;
begin
reserve l, m, n for Nat;
reserve a,b for Int-Location,
f for FinSeq-Location,
s,s1,s2 for State of SCM+FSA;
registration
let n be Nat;
let i be Integer;
cluster (intloc n) .--> i -> (the_Values_of SCM+FSA)-compatible;
end;
definition
let I be PartState of SCM+FSA;
func Initialized I -> PartState of SCM+FSA equals
:: SCMFSA_M:def 1
I +* Initialize ((intloc 0) .--> 1);
projectivity;
end;
registration
let I be PartState of SCM+FSA;
cluster Initialized I -> 0-started;
end;
registration
let I be FinPartState of SCM+FSA;
cluster Initialized I -> finite;
end;
scheme :: SCMFSA_M:sch 1
SCMFSAEx{ G(set) -> Integer, H(set) -> FinSequence of INT,
I() -> Element of NAT }:
ex S being State of SCM+FSA st IC S = I() &
for i being Nat holds S.intloc i = G(i) & S.fsloc i = H(i);
theorem :: SCMFSA_M:1
for s being State of SCM+FSA, x being set st x in dom s holds x is
Int-Location or x is FinSeq-Location or x = IC SCM+FSA;
theorem :: SCMFSA_M:2
for s1,s2 being State of SCM+FSA holds ((for a being
Int-Location holds s1.a = s2.a) & for f being FinSeq-Location
holds s1.f = s2.f) iff DataPart s1 = DataPart s2;
theorem :: SCMFSA_M:3
for p being PartState of SCM+FSA holds dom Initialized p = dom p
\/ {intloc 0} \/ {IC SCM+FSA};
registration
let s be State of SCM+FSA;
cluster Initialized s -> total;
end;
theorem :: SCMFSA_M:4
for p being PartState of SCM+FSA holds intloc 0 in dom Initialized p;
theorem :: SCMFSA_M:5
for p being PartState of SCM+FSA holds (Initialized p).intloc 0 =
1 & (Initialized p).IC SCM+FSA = 0;
theorem :: SCMFSA_M:6
for p being PartState of SCM+FSA, a being Int-Location
st a <> intloc 0 & not a in dom p
holds not a in dom Initialized p;
theorem :: SCMFSA_M:7
for p being PartState of SCM+FSA, f being FinSeq-Location
st not f in dom p
holds not f in dom Initialized p;
theorem :: SCMFSA_M:8 :: from SCMFSA8C
for s being State of SCM+FSA st s.intloc 0 = 1 & IC s = 0
holds Initialized s = s;
theorem :: SCMFSA_M:9
for p being PartState of SCM+FSA holds
(Initialized p).intloc 0 = 1;
theorem :: SCMFSA_M:10
intloc 0 in dom Initialize ((intloc 0).-->1);
theorem :: SCMFSA_M:11
dom Initialize ((intloc 0) .--> 1) = {intloc 0,IC SCM+FSA};
theorem :: SCMFSA_M:12
(Initialize((intloc 0).-->1)).intloc 0 = 1;
theorem :: SCMFSA_M:13
for p being PartState of SCM+FSA holds
Initialize((intloc 0).-->1) c= Initialized p;
begin :: from SF_MASTR
registration
cluster Int-Locations -> non empty;
end;
definition
let IT be Int-Location;
attr IT is read-only means
:: SCMFSA_M:def 2
IT = intloc 0;
end;
notation
let IT be Int-Location;
antonym IT is read-write for IT is read-only;
end;
registration
cluster intloc 0 -> read-only;
end;
registration
cluster read-write for Int-Location;
end;
reserve L for finite Subset of Int-Locations;
definition
let L be finite Subset of Int-Locations;
func FirstNotIn L -> Int-Location means
:: SCMFSA_M:def 3
ex sn being non empty Subset of NAT
st it = intloc min sn &
sn = {k where k is Element of NAT : not intloc k in L};
end;
theorem :: SCMFSA_M:14
not FirstNotIn L in L;
theorem :: SCMFSA_M:15
FirstNotIn L = intloc m & not intloc n in L implies m <= n;
reserve L for finite Subset of FinSeq-Locations;
definition
let L be finite Subset of FinSeq-Locations;
func First*NotIn L -> FinSeq-Location means
:: SCMFSA_M:def 4
ex sn being non empty Subset of NAT st
it = fsloc min sn & sn = {k where k is Element of NAT : not
fsloc k in L};
end;
theorem :: SCMFSA_M:16
not First*NotIn L in L;
theorem :: SCMFSA_M:17
First*NotIn L = fsloc m & not fsloc n in L implies m <= n;
registration
let s be State of SCM+FSA, li be Int-Location, k be Integer;
cluster s+*(li,k) -> (the_Values_of SCM+FSA)-compatible;
end;
begin ::from SCMFSA8C
registration let a be Int-Location, n be Nat;
cluster a .--> n -> data-only for PartState of SCM+FSA;
end;
theorem :: SCMFSA_M:18
for s being State of SCM+FSA st s.intloc 0 = 1
holds Initialize s = Initialized s;
theorem :: SCMFSA_M:19
for s being State of SCM+FSA st s.intloc 0 = 1
holds DataPart Initialized s = DataPart s;
theorem :: SCMFSA_M:20
for s1,s2 being State of SCM+FSA st s1.intloc 0 = s2.intloc 0 &
((for a being read-write Int-Location holds s1.a = s2.a) & for f being
FinSeq-Location holds s1.f = s2.f) holds DataPart s1 = DataPart s2;
theorem :: SCMFSA_M:21
for s being State of SCM+FSA, a being Int-Location,
l being Nat holds
(s +* Start-At(l,SCM+FSA)).a = s.a;
begin :: from SFMASTR1
definition
let d be Int-Location;
redefine func { d } -> Subset of Int-Locations;
let e be Int-Location;
redefine func { d, e } -> Subset of Int-Locations;
let f be Int-Location;
redefine func { d, e, f } -> Subset of Int-Locations;
let g be Int-Location;
redefine func { d, e, f, g } -> Subset of Int-Locations;
end;
definition
let L be finite Subset of Int-Locations;
func RWNotIn-seq L -> sequence of bool NAT means
:: SCMFSA_M:def 5
it.0 = {k where k is Element of NAT : not intloc k in L & k <> 0} &
(for i being Nat,
sn being non empty Subset of NAT st it.i = sn
holds it.(i+1) = sn \ {min sn})
& for i being Nat holds it.i is infinite;
end;
registration
let L be finite Subset of Int-Locations, n be Nat;
cluster (RWNotIn-seq L).n -> non empty;
end;
reserve L for finite Subset of Int-Locations;
theorem :: SCMFSA_M:22
not 0 in (RWNotIn-seq L).n & for m st m in (RWNotIn-seq L).n
holds not intloc m in L;
theorem :: SCMFSA_M:23
for n being Nat holds
min ((RWNotIn-seq L).n) < min ((RWNotIn-seq L).(n+1));
theorem :: SCMFSA_M:24
for n,m being Element of NAT holds
n < m implies min ((RWNotIn-seq L).n) < min ((RWNotIn-seq L).m);
definition
let n be Element of NAT, L be finite Subset of Int-Locations;
func n-thRWNotIn L -> Int-Location equals
:: SCMFSA_M:def 6
intloc min ((RWNotIn-seq L).n);
end;
notation
let n be Element of NAT, L be finite Subset of Int-Locations;
synonym n-stRWNotIn L for n-thRWNotIn L;
synonym n-ndRWNotIn L for n-thRWNotIn L;
synonym n-rdRWNotIn L for n-thRWNotIn L;
end;
registration
let n be Element of NAT, L be finite Subset of Int-Locations;
cluster n-thRWNotIn L -> read-write;
end;
theorem :: SCMFSA_M:25
for n being Element of NAT holds
not n-thRWNotIn L in L;
theorem :: SCMFSA_M:26
for n,m being Element of NAT holds
n <> m implies n-thRWNotIn L <> m-thRWNotIn L;
begin :: from SFMASTR2
theorem :: SCMFSA_M:27
for Iloc being Subset of Int-Locations, Floc being Subset of
FinSeq-Locations holds s1 | (Iloc \/ Floc) = s2 | (Iloc \/ Floc) iff (for x
being Int-Location st x in Iloc holds s1.x = s2.x) & for x being
FinSeq-Location st x in Floc holds s1.x = s2.x;
theorem :: SCMFSA_M:28
for Iloc being Subset of Int-Locations holds s1 | (Iloc \/
FinSeq-Locations) = s2 | (Iloc \/ FinSeq-Locations) iff (for x being
Int-Location st x in Iloc holds s1.x = s2.x) & for x being FinSeq-Location
holds s1.x = s2.x;
begin :: from SCM_HALT
theorem :: SCMFSA_M:29
for x being set,i,m,n being Nat
st x in dom (((intloc i) .--> m) +* Start-At(n,SCM+FSA))
holds x=intloc i or x=IC SCM+FSA;
theorem :: SCMFSA_M:30
for s being State of SCM+FSA st
Initialize ((intloc 0) .--> 1) c= s holds s.intloc 0 =1;
registration
let n be Nat;
cluster intloc (n+1) -> read-write;
end;
begin :: from SCMBSORT
registration
let f be FinSeq-Location,t be FinSequence of INT;
cluster f .--> t -> (the_Values_of SCM+FSA)-compatible;
end;
theorem :: SCMFSA_M:31
for w being FinSequence of INT,f be FinSeq-Location
holds dom (Initialized (f.--> w)) = {intloc 0,IC SCM+FSA,f};
theorem :: SCMFSA_M:32
for t be FinSequence of INT,f be FinSeq-Location
holds dom Initialize((intloc 0) .--> 1) misses dom (f .--> t);
theorem :: SCMFSA_M:33
for w being FinSequence of INT,f be FinSeq-Location,s be State of SCM+FSA
st Initialized(f .--> w) c= s
holds s.f = w & s.(intloc 0) = 1;
theorem :: SCMFSA_M:34
for f being FinSeq-Location,a being Int-Location,s being State of SCM+FSA
holds {a,IC SCM+FSA,f} c= dom s;
definition
func Sorting-Function -> PartFunc of FinPartSt SCM+FSA,FinPartSt SCM+FSA
means
:: SCMFSA_M:def 7
for p,q being FinPartState of SCM+FSA holds [p,q] in it
iff ex t being FinSequence of INT,u being FinSequence of REAL
st t,u are_fiberwise_equipotent & u is FinSequence of INT &
u is non-increasing & p = fsloc 0 .--> t & q = fsloc 0 .--> u;
end;
theorem :: SCMFSA_M:35
for p being set holds p in dom Sorting-Function iff
ex t being FinSequence of INT st p = fsloc 0 .--> t;
theorem :: SCMFSA_M:36
for t being FinSequence of INT holds
ex u being FinSequence of REAL st t,u are_fiberwise_equipotent &
u is non-increasing & u is FinSequence of INT &
Sorting-Function.(fsloc 0 .--> t ) = fsloc 0 .--> u;
:: SCMFSA6C:3
theorem :: SCMFSA_M:37
(for a being read-write Int-Location holds (Initialized s).a = s.a) &
(for f holds (Initialized s).f = s.f);
theorem :: SCMFSA_M:38
(Initialize s).a = s.a;