:: The { \bf while } macro instructions of SCM+FSA, Part { II }
:: by Piotr Rudnicki
::
:: Received June 3, 1998
:: Copyright (c) 1998-2018 Association of Mizar Users
:: (Stowarzyszenie Uzytkownikow Mizara, Bialystok, Poland).
:: This code can be distributed under the GNU General Public Licence
:: version 3.0 or later, or the Creative Commons Attribution-ShareAlike
:: License version 3.0 or later, subject to the binding interpretation
:: detailed in file COPYING.interpretation.
:: See COPYING.GPL and COPYING.CC-BY-SA for the full text of these
:: licenses, or see http://www.gnu.org/licenses/gpl.html and
:: http://creativecommons.org/licenses/by-sa/3.0/.
environ
vocabularies NUMBERS, SUBSET_1, INT_1, AMI_1, SCMFSA_2, SF_MASTR, FUNCOP_1,
FUNCT_1, CARD_3, RELAT_1, TARSKI, AMISTD_2, XBOOLE_0, CARD_1, SCMFSA8A,
AMI_3, FSM_1, SCMFSA7B, SCMFSA8B, ARYTM_3, SCMFSA6A, ARYTM_1, FUNCT_4,
SCMFSA_9, SCMFSA6B, XXREAL_0, CIRCUIT2, GRAPHSP, NAT_1, SCMFSA6C,
MSUALG_1, SFMASTR1, PRE_FF, COMPLEX1, ABIAN, SCMFSA9A, PARTFUN1,
EXTPRO_1, COMPOS_1, MEMSTR_0, SCMFSA_7, SCMFSA8C, SFMASTR2, AMISTD_1,
TURING_1;
notations TARSKI, XBOOLE_0, SUBSET_1, CARD_1, ORDINAL1, NUMBERS, XCMPLX_0,
FINSUB_1, FUNCOP_1, INT_1, ABIAN, RELAT_1, FUNCT_1, PARTFUN1, FUNCT_2,
PRE_FF, CARD_3, FUNCT_4, FUNCT_7, PBOOLE, VALUED_1, INT_2, XXREAL_0,
NAT_1, NAT_D, MEMSTR_0, COMPOS_0, COMPOS_1, COMPOS_2, EXTPRO_1, AMISTD_1,
AMISTD_2, SCMFSA_2, SCMFSA6A, SCMFSA6B, SF_MASTR, SCMFSA6C, SCMFSA_7,
SCMFSA7B, SCMFSA8A, SCMFSA8B, SCMFSA_9, SFMASTR1, SCMFSA8C, SCMFSA_M,
SCMFSA_X;
constructors NAT_D, PRE_FF, ABIAN, SCMFSA_7, SCMFSA6A, SCMFSA6B, MEMSTR_0,
SCMFSA6C, SCMFSA8A, SCMFSA8B, SCMFSA_9, SFMASTR1, AMISTD_2, RELSET_1,
PRE_POLY, XXREAL_2, PBOOLE, SCMFSA7B, SCMFSA8C, FUNCT_4, AMISTD_1, AMI_3,
SCMFSA_M, SF_MASTR, SCMFSA_X, DOMAIN_1, COMPOS_2;
registrations XBOOLE_0, FUNCT_1, ORDINAL1, RELSET_1, FINSET_1, FINSUB_1,
XXREAL_0, XREAL_0, NAT_1, INT_1, CARD_3, ABIAN, SCMFSA_2, SCMFSA6B,
SCMFSA6C, SCMFSA7B, SCMFSA8A, SCMFSA8B, SCMFSA_9, SFMASTR1, VALUED_1,
AFINSQ_1, FUNCT_4, FUNCOP_1, COMPOS_1, EXTPRO_1, STRUCT_0, MEMSTR_0,
AMI_3, COMPOS_0, SCMFSA_M, SCMFSA8C, SCMFSA6A, SCMFSA10, SCMFSA_X,
COMPOS_2;
requirements REAL, NUMERALS, SUBSET, BOOLE, ARITHM;
begin :: SCM+FSA preliminaries
reserve p,p1,p2,h for Instruction-Sequence of SCM+FSA;
reserve k, l, n for Nat,
j for Integer,
i,i1 for Instruction of SCM+FSA;
theorem :: SCMFSA9A:1 :: singleUsed
UsedILoc(l .--> i) = UsedIntLoc i;
theorem :: SCMFSA9A:2 :: singleUsedF:
UsedI*Loc (l .--> i) = UsedInt*Loc i;
theorem :: SCMFSA9A:3 :: StopUsed:
UsedILoc Stop SCM+FSA = {};
theorem :: SCMFSA9A:4 :: StopUsedF:
UsedI*Loc Stop SCM+FSA = {};
theorem :: SCMFSA9A:5 :: GotoUsed:
UsedILoc Goto l = {};
theorem :: SCMFSA9A:6 :: GotoUsedF:
UsedI*Loc Goto l = {};
reserve s, s1, s2 for State of SCM+FSA,
a for read-write Int-Location,
b for Int-Location,
I, J for MacroInstruction of SCM+FSA,
Ig for good MacroInstruction of SCM+FSA,
i, j, k, m, n for Nat;
theorem :: SCMFSA9A:7
UsedILoc if=0(b, I, J) = {b} \/ UsedILoc I \/ UsedILoc J;
theorem :: SCMFSA9A:8 :: eifUsedF:
for a being Int-Location holds UsedI*Loc if=0(a, I, J) =
UsedI*Loc I \/ UsedI*Loc J;
theorem :: SCMFSA9A:9 :: ifUsed:
UsedILoc if>0(b, I, J) = {b} \/ UsedILoc I \/ UsedILoc J;
theorem :: SCMFSA9A:10 :: ifUsedF:
UsedI*Loc if>0(b, I, J) = UsedI*Loc I \/ UsedI*Loc J;
begin
theorem :: SCMFSA9A:11 :: ewhileUsed:
UsedILoc while=0(b, I) = {b} \/ UsedILoc I;
theorem :: SCMFSA9A:12 :: ewhileUsedF:
UsedI*Loc while=0(b, I) = UsedI*Loc I;
definition let p;
let s be State of SCM+FSA, a be read-write Int-Location,
I be MacroInstruction of SCM+FSA;
pred ProperBodyWhile=0 a, I, s, p means
:: SCMFSA9A:def 1
for k being Nat st StepWhile=0(a,I,p,s).k.a = 0 holds
I is_halting_on StepWhile=0(a,I,p,s).k, p+*while=0(a,I);
pred WithVariantWhile=0 a, I, s, p means
:: SCMFSA9A:def 2
ex f being Function of product the_Values_of SCM+FSA, NAT
st for k being Nat
holds f.(StepWhile=0(a,I,p,s).(k+1)) < f.(StepWhile=0(a,I,p,s).k)
or StepWhile=0(a,I,p,s).k.a <> 0;
end;
theorem :: SCMFSA9A:13 :: eParaProper:
for I being parahalting MacroInstruction of SCM+FSA holds
ProperBodyWhile=0 a,I,s,p;
theorem :: SCMFSA9A:14 :: SCMFSA_9:24, corrected
for I being really-closed MacroInstruction of SCM+FSA holds
ProperBodyWhile=0 a,I,s,p & WithVariantWhile=0 a,I,s,p implies
while=0(a,I) is_halting_on s,p;
theorem :: SCMFSA9A:15 :: SCMFSA_9:25, corrected
for I being parahalting really-closed MacroInstruction of SCM+FSA
st WithVariantWhile=0 a, I, s, p
holds while=0(a,I) is_halting_on s,p;
theorem :: SCMFSA9A:16 :: based on SCMFSA_9:10
for s being 0-started State of SCM+FSA
st while=0(a, I) c= p & s.a <> 0
holds LifeSpan(p,s) = 3 & for k being Nat
holds DataPart Comput(p,s,k) = DataPart s;
theorem :: SCMFSA9A:17 :: based on SCMFSA_9:22
for I being really-closed MacroInstruction of SCM+FSA holds
I is_halting_on s,p & s.a = 0 implies DataPart
Comput(p +* while=0(a,I),(Initialize s),
(LifeSpan(p+* I,Initialize s) + 2)) =
DataPart Comput(p +* I,
(Initialize s), (LifeSpan(p+* I,Initialize s)));
theorem :: SCMFSA9A:18 :: Step_eq0_0:
(StepWhile=0(a,I,p,s).k).a <> 0 implies
DataPart StepWhile=0(a,I,p,s).(k+1) = DataPart StepWhile=0(a,I,p,s).k;
theorem :: SCMFSA9A:19 :: Step_eq0_1:
for I being really-closed MacroInstruction of SCM+FSA holds
( I is_halting_on Initialized StepWhile=0(a,I,p,s).k ,p+*while=0(a,I)
or
I is parahalting) & (
StepWhile=0(a,I,p,s).k).a = 0 & (StepWhile=0(a,I,p,s).k).intloc 0 = 1 implies
DataPart StepWhile=0(a,I,p,s).(k+1) =
DataPart IExec(I,p+*while=0(a,I),StepWhile=0(a,I,p,s).k);
theorem :: SCMFSA9A:20 :: eGoodStep0:
for Ig being good really-closed MacroInstruction of SCM+FSA holds
(ProperBodyWhile=0 a,Ig,s,p or Ig is parahalting) & s.intloc 0 = 1
implies for k holds StepWhile=0(a,Ig,p,s).k.intloc 0 = 1;
theorem :: SCMFSA9A:21
for I being really-closed MacroInstruction of SCM+FSA holds
ProperBodyWhile=0 a,I,s1,p1 & DataPart s1 = DataPart s2 implies for k
holds DataPart StepWhile=0(a,I,p1,s1).k = DataPart StepWhile=0(a,I,p2,s2).k;
definition let p;
let s be State of SCM+FSA, a be read-write Int-Location,
I be really-closed MacroInstruction of SCM+FSA;
assume that
ProperBodyWhile=0 a,I,s,p or I is parahalting and
WithVariantWhile=0 a,I,s,p;
func ExitsAtWhile=0(a, I, p, s) -> Nat means
:: SCMFSA9A:def 3
ex k being Nat
st it = k & (StepWhile=0(a,I,p,s).k).a <> 0 &
(for i being Nat
st (StepWhile=0(a,I,p,s).i).a <> 0 holds k <= i) &
DataPart Comput(p +* while=0(a, I),
Initialize s,
(LifeSpan(p +* while=0(a, I),
Initialize s)))
= DataPart StepWhile=0(a,I,p,s).k;
end;
theorem :: SCMFSA9A:22 :: IE_while_ne0:
s.intloc 0 = 1 & s.a <> 0 implies DataPart IExec(while=0(a,I),p,s) =
DataPart s;
theorem :: SCMFSA9A:23 :: IE_while_eq0:
for I being really-closed MacroInstruction of SCM+FSA holds
(ProperBodyWhile=0 a,I,Initialized s,p or I is parahalting) &
WithVariantWhile=0 a,I,Initialized s,p
implies
DataPart IExec(while=0(a,I),p,s)
= DataPart
StepWhile=0(a,I,p,Initialized s).ExitsAtWhile=0(a,I,p,Initialized s);
begin
theorem :: SCMFSA9A:24
UsedILoc while>0(b, I) = {b} \/ UsedILoc I;
theorem :: SCMFSA9A:25
UsedI*Loc while>0(b, I) = UsedI*Loc I;
definition let p;
let s be State of SCM+FSA, a be read-write Int-Location,
I be MacroInstruction of SCM+FSA;
pred ProperBodyWhile>0 a,I,s,p means
:: SCMFSA9A:def 4
for k being Nat st StepWhile>0(a,I,p,s).k.a > 0
holds I is_halting_on StepWhile>0(a,I,p,s).k, p+*while>0(a,I);
pred WithVariantWhile>0 a,I,s,p means
:: SCMFSA9A:def 5
ex f being Function of product the_Values_of SCM+FSA, NAT
st for k being Nat holds ( f.(
StepWhile>0(a,I,p,s).(k+1)) < f.(StepWhile>0(a,I,p,s).k) or
StepWhile>0(a,I,p,s).k.a <= 0 );
end;
theorem :: SCMFSA9A:26 :: ParaProper:
for I being parahalting MacroInstruction of SCM+FSA holds
ProperBodyWhile>0 a,I,s,p;
theorem :: SCMFSA9A:27 :: SCMFSA_9:42, corrected
for I being really-closed MacroInstruction of SCM+FSA holds
ProperBodyWhile>0 a,I,s,p & WithVariantWhile>0 a,I,s,p implies
while>0(a,I) is_halting_on s,p;
theorem :: SCMFSA9A:28 :: SCMFSA_9:43, corrected
for I being parahalting really-closed MacroInstruction of SCM+FSA
st WithVariantWhile>0 a, I, s, p
holds while>0(a,I) is_halting_on s,p;
theorem :: SCMFSA9A:29 :: based on SCMFSA_9:10
for s being 0-started State of SCM+FSA
st while>0(a, I) c= p & s.a <= 0
holds LifeSpan(p,s) = 3 & for k being Nat
holds DataPart Comput(p,s,k) = DataPart s;
theorem :: SCMFSA9A:30 :: based on SCMFSA_9:36
for I being really-closed MacroInstruction of SCM+FSA holds
I is_halting_on s,p & s.a > 0 implies DataPart
Comput(p +* while>0(a,I),Initialize s,LifeSpan(p +* I,Initialize s) + 2)
= DataPart Comput(p +* I,Initialize s,LifeSpan(p +* I,Initialize s));
theorem :: SCMFSA9A:31 :: Step_gt0_0:
(StepWhile>0(a,I,p,s).k).a <= 0 implies
DataPart StepWhile>0(a,I,p,s).(k+1) = DataPart StepWhile>0(a,I,p,s).k;
theorem :: SCMFSA9A:32 :: Step_gt0_1:
for I being really-closed MacroInstruction of SCM+FSA holds
( I is_halting_on Initialized StepWhile>0(a,I,p,s).k ,p+*while>0(a,I)
or
I is parahalting) & (
StepWhile>0(a,I,p,s).k).a > 0 & (StepWhile>0(a,I,p,s).k).intloc 0 = 1 implies
DataPart StepWhile>0(a,I,p,s).(k+1)
= DataPart IExec(I,p+*while>0(a,I),StepWhile>0(a,I,p,s).k);
theorem :: SCMFSA9A:33 :: GoodStep0:
for Ig being good really-closed MacroInstruction of SCM+FSA holds
(ProperBodyWhile>0 a,Ig,s,p or Ig is parahalting) & s.intloc 0 =
1 implies for k holds StepWhile>0(a,Ig,p,s).k.intloc 0 = 1;
theorem :: SCMFSA9A:34
for I being really-closed MacroInstruction of SCM+FSA holds
ProperBodyWhile>0 a,I,s1,p1 & DataPart s1 = DataPart s2 implies
for k holds DataPart StepWhile>0(a,I,p1,s1).k
= DataPart StepWhile>0(a,I,p2,s2).k;
definition let p;
let s be State of SCM+FSA, a be read-write Int-Location,
I be really-closed MacroInstruction of SCM+FSA;
assume that
ProperBodyWhile>0 a,I,s,p or I is parahalting and
WithVariantWhile>0 a,I,s,p;
func ExitsAtWhile>0(a, I, p, s) -> Nat means
:: SCMFSA9A:def 6
ex k being Nat st it = k &
(StepWhile>0(a,I,p,s).k).a <= 0 &
(for i being Nat st (StepWhile>0(a,I,p,s).i).a <= 0
holds k <= i) &
DataPart Comput(p +* while>0(a, I),
Initialize s,
(LifeSpan(p +* while>0(a, I),
Initialize s)))
= DataPart StepWhile>0(a,I,p,s).k;
end;
theorem :: SCMFSA9A:35 :: IE_while_le0:
s.intloc 0 = 1 & s.a <= 0
implies DataPart IExec(while>0(a,I),p,s) = DataPart s;
theorem :: SCMFSA9A:36 :: IE_while_gt0:
for I being really-closed MacroInstruction of SCM+FSA holds
(ProperBodyWhile>0 a,I,Initialized s,p or I is parahalting) &
WithVariantWhile>0 a,I,Initialized s,p implies DataPart IExec(while>0(a,I),p,s)
= DataPart
StepWhile>0(a,I,p,Initialized s).ExitsAtWhile>0(a,I,p,Initialized s);
theorem :: SCMFSA9A:37
StepWhile>0(a,I,p,s).k.a <= 0 implies for n being Nat
st k <= n
holds DataPart StepWhile>0(a,I,p,s).n = DataPart StepWhile>0(a,I,p,s).k;
theorem :: SCMFSA9A:38
for I being really-closed MacroInstruction of SCM+FSA holds
DataPart s1 = DataPart s2 & ProperBodyWhile>0 a,I,s1,p1 implies
ProperBodyWhile>0 a,I,s2,p2;
theorem :: SCMFSA9A:39
for Ig being good really-closed MacroInstruction of SCM+FSA holds
s.intloc 0 = 1 & ProperBodyWhile>0 a,Ig,s,p &
WithVariantWhile>0 a, Ig, s, p
implies for i, j st i <> j & i <= ExitsAtWhile>0(a,Ig,p,s) & j <=
ExitsAtWhile>0(a,Ig,p,s) holds StepWhile>0(a,Ig,p,s).i <> StepWhile>0(a,Ig,p,s)
.j & DataPart StepWhile>0(a,Ig,p,s).i <> DataPart StepWhile>0(a,Ig,p,s).j;
::$CD
theorem :: SCMFSA9A:40
for Ig being good really-closed MacroInstruction of SCM+FSA holds
s.intloc 0 = 1 & ProperBodyWhile>0 a,Ig,s,p &
WithVariantWhile>0 a, Ig, s, p
implies ex f being Function of product the_Values_of SCM+FSA, NAT
st f is on_data_only & for k being Nat
holds f.(StepWhile>0(a,Ig,p,s).(k+1)) < f.(StepWhile>0(a,Ig,p,s).k) or
StepWhile>0(a,Ig,p,s).k.a <= 0;
theorem :: SCMFSA9A:41
for Ig being good really-closed MacroInstruction of SCM+FSA holds
s1.intloc 0 = 1 & DataPart s1 = DataPart s2 &
ProperBodyWhile>0 a,Ig,s1,p1 & WithVariantWhile>0 a,Ig,s1,p1
implies WithVariantWhile>0 a,Ig,s2,p2;
begin :: fusc using while>0, bottom-up
definition
let N, result be Int-Location;
func Fusc_macro ( N, result ) -> MacroInstruction of SCM+FSA equals
:: SCMFSA9A:def 8
SubFrom(result,
result) ";" ((1-stRWNotIn {N, result}) := intloc 0) ";" ((2-ndRWNotIn {N,
result}) := N) ";" while>0 ( 2-ndRWNotIn {N, result}, (3-rdRWNotIn {N, result})
:= 2 ";" Divide(2-ndRWNotIn {N, result}, 3-rdRWNotIn {N, result}) ";"
if=0 ( 3-rdRWNotIn {N, result},
Macro AddTo(1-stRWNotIn {N, result}, result),
Macro AddTo(result, 1-stRWNotIn {N, result})
qua MacroInstruction of SCM+FSA
)
);
end;
:: set next = 1-stRWNotIn {N, result};
:: set aux = 2-ndRWNotIn {N, result};
:: set rem2 = 3-rdRWNotIn {N, result};
:: while and if do not allocate memory, no need to save anything
registration let N,R be read-write Int-Location;
cluster Fusc_macro(N,R) -> really-closed;
end;
theorem :: SCMFSA9A:42
for N, result being read-write Int-Location st N <> result for n being
Element of NAT st n = s.N
holds IExec(Fusc_macro(N,result),p,s).result = Fusc n
& IExec(Fusc_macro(N,result),p,s).N = n;
theorem :: SCMFSA9A:43
for I,J being MacroInstruction of SCM+FSA, a being Int-Location holds
UsedILoc if=0(a,I,J) = {a} \/ UsedILoc I \/ UsedILoc J &
UsedILoc if>0(a,I,J) = {a} \/ UsedILoc I \/ UsedILoc J;
theorem :: SCMFSA9A:44
UsedILoc Times(b, I) = {b, intloc 0} \/ UsedILoc I;
theorem :: SCMFSA9A:45
UsedI*Loc Times(b, I) = UsedI*Loc I;
begin :: analogous to SFMASTR2
reserve s, s1, s2 for State of SCM+FSA,
p, p1 for Instruction-Sequence of SCM+FSA,
a, b for Int-Location,
d for read-write Int-Location,
f for FinSeq-Location,
I for MacroInstruction of SCM+FSA,
J for good MacroInstruction of SCM+FSA,
k, m, n for Nat;
:: registration
:: let I be good Program of SCM+FSA, a be Int-Location;
:: cluster Times(a, I) -> good;
:: coherence;
:: end;
definition let p;
let s be State of SCM+FSA, I be MacroInstruction of SCM+FSA,
a be read-write Int-Location;
func StepTimes(a, I, p, s) ->
sequence of product the_Values_of SCM+FSA equals
:: SCMFSA9A:def 9
StepWhile>0(a,I ";" SubFrom(a, intloc 0), p, Initialized s);
end;
reserve a for read-write Int-Location;
theorem :: SCMFSA9A:46
StepTimes(a,J,p,s).0.intloc 0 = 1;
theorem :: SCMFSA9A:47
StepTimes(a,J,p,s).0.a = s.a;
registration
let I be really-closed MacroInstruction of SCM+FSA, a be Int-Location;
cluster Times(a,I) -> really-closed;
end;
theorem :: SCMFSA9A:48
for J being good really-closed MacroInstruction of SCM+FSA holds
J does not destroy a &
StepTimes(a,J,p,s).k.intloc 0 = 1 &
J is_halting_on StepTimes(a,J,p,s).k, p+*Times(a,J) implies
StepTimes(a,J,p,s).(k+1).intloc 0 = 1 &
(StepTimes(a,J,p,s).k.a > 0
implies StepTimes(a,J,p,s).(k+1).a = StepTimes(a,J,p,s).k.a - 1);
theorem :: SCMFSA9A:49
StepTimes(a,I,p,s).0.f = s.f;
definition let p;
let s be State of SCM+FSA, a be read-write Int-Location,
I be MacroInstruction of SCM+FSA;
pred ProperTimesBody a, I, s, p means
:: SCMFSA9A:def 10
for k being Nat st k < s.a
holds I is_halting_on StepTimes(a,I,p,s).k, p+*Times(a,I);
end;
theorem :: SCMFSA9A:50
I is parahalting implies ProperTimesBody a,I,s,p;
theorem :: SCMFSA9A:51
for J being good really-closed MacroInstruction of SCM+FSA holds
J does not destroy a &
ProperTimesBody a,J,s,p implies for k st k <= s.a holds
StepTimes(a,J,p,s).k.intloc 0 = 1;
theorem :: SCMFSA9A:52
for J being good really-closed MacroInstruction of SCM+FSA holds
J does not destroy a & ProperTimesBody a,J,s,p
implies for k st k <= s.a holds StepTimes(a,J,p,s).k.a+k = s.a;
theorem :: SCMFSA9A:53
for J being good really-closed MacroInstruction of SCM+FSA holds
J does not destroy a &
ProperTimesBody a,J,s,p & 0 <= s.a
implies
for k st k >= s.a
holds StepTimes(a,J,p,s).k.a = 0 & StepTimes(a,J,p,s).k.intloc 0 = 1;
theorem :: SCMFSA9A:54
for J being good really-closed MacroInstruction of SCM+FSA holds
J does not destroy a &
s.a = k & (ProperTimesBody a,J,s,p or J is parahalting)
implies
DataPart IExec(Times(a,J),p,s) = DataPart StepTimes(a,J,p,s).k;
theorem :: SCMFSA9A:55
for J being good really-closed MacroInstruction of SCM+FSA holds
J does not destroy a &
s.intloc 0 = 1 & (ProperTimesBody a,J,s,p or J is parahalting)
implies Times(a, J) is_halting_on s,p;
:: from SCMFSA8C, 2013.04.13, A.T.
reserve P for Instruction-Sequence of SCM+FSA;
theorem :: SCMFSA9A:56
for s being State of SCM+FSA,
I being good parahalting really-closed MacroInstruction of SCM+FSA,
a being read-write Int-Location
st I does not destroy a & s.intloc 0 = 1
holds Times(a,I) is_halting_on s,P;
theorem :: SCMFSA9A:57
for I being good parahalting really-closed MacroInstruction of SCM+FSA,
a being read-write Int-Location st I does not destroy a
holds Initialize((intloc 0).-->1) is Times(a,I)-halted;
theorem :: SCMFSA9A:58
for s being State of SCM+FSA, I being MacroInstruction of SCM+FSA,
a being read-write Int-Location st s.intloc 0 = 1 & s.a <= 0 holds
DataPart IExec(Times(a,I),P,s) = DataPart s;